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Chapter 1

Preface

This thesis is submitted to the Faculty of Science at the University of Aarhus to ful�ll the

requirements for obtaining the PhD degree in chemistry. It contains the results of four years of

PhD studies at the Center for Theoretical Chemistry, Department of Chemistry, University of

Aarhus, under supervision of Poul Jørgensen from 2006 to 2010.

The focus of the thesis is on obtaining optimized density matrices for Hartree-Fock and

Density Functional Theory, and optimized wave functions for Coupled-Cluster theory as well

as linear scaling response properties within Hartree-Fock and Density Functional Theory. As

will become evident, the focus has been mostly on methodological developments and less on

applications.

1.1 Publications

The research I have participated in during my PhD studies has been documented in 9 articles:

A. Thomas Kjærgaard, Branislav Jansík, Poul Jørgensen, Sonia Coriani, and Josef Michl:

Gauge-Origin-Independent Coupled Cluster Singles and Doubles Calculation of Magnetic

Circular Dichroism of Azabenzenes and Phosphabenzene Using London Orbitals

J. Phys. Chem. A 111, 11278 (2007)

B. Thomas Kjærgaard, Poul Jørgensen, Jeppe Olsen, Sonia Coriani, and Trygve Helgaker:

Hartree-Fock and Kohn-Sham time-dependent response theory in a second-quantization

atomic-orbital formalism suitable for linear scaling

J. Chem. Phys. 129, 054106 (2008)

C. Simen Reine, Erik Tellgren, Andreas Krapp, Thomas Kjærgaard, Trygve Helgaker, Branislav

Jansík, Stinne Høst, and Pawel Saªek:

Variational and robust density �tting of four-center two-electron integrals in local metrics

J. Chem. Phys. 129, 104101 (2008)

D. Kasper Kristensen, Joanna Kauczor, Thomas Kjærgaard, and Poul Jørgensen:
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Preface

Quasienergy formulation of damped response theory

J. Chem. Phys. 131, 044112 (2009)

E. Thomas Kjærgaard, Poul Jørgensen, Andreas Johan Thorvaldsen, Pawel Saªek, and Sonia

Coriani:

Gauge-Origin Independent Formulation and Implementation of Magneto-Optical Activity

within Atomic-Orbital-Density Based Hartree-Fock and Kohn-Sham Response Theories

J. Chem. Theory Comput 5, 1997 (2009)

F. Sonia Coriani, Thomas Kjærgaard, Poul Jørgensen, Kenneth Ruud, Joonsuk Huh, and

Robert Berger:

An atomic-orbital based Lagrangian approach for calculating geometrical gradients of linear

response properties

J. Chem. Theory Comput, 6 1028 (2010)

G. Marcin Zióªkowski, Branislav Jansík, Thomas Kjærgaard, and Poul Jørgensen:

Linear scaling coupled cluster method with correlation energy based error control

J. Chem. Phys. 133, 014107 (2010)

H. Marcin Zióªkowski, Branislav Jansík, Thomas Kjærgaard, Kasper Kristensen, and Poul

Jørgensen:

The divide�expand�consolidate (DEC) coupled cluster method. A linear�scaling approach

with correlation energy�based error control

manuscript

I. Thomas Kjærgaard, Kasper Kristensen, Joanna Kauczor, Sonia Coriani, Andreas Johan

Thorvaldsen, and Poul Jørgensen:

Comparison of standard and damped response formulations of Magnetic Circular Dichroism

manuscript

All papers are included at the end of this thesis.

1.2 Miscellaneous

Atomic units are used throughout this thesis unless otherwise stated.

All methods described have been implemented in a local development version of the quantum

chemistry program DALTON [1] except for the DEC model of chapter 6 which constitute a

separate PROGRAM [2].

1.3 Acknowledgments

I would �rst and foremost like to thank my supervisor Professor Poul Jørgensen, for his invaluable

guidance through my years of study. Professor Jørgensen is extremely generous with his time,
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1.3 Acknowledgments

his experiences, and his skills in debugging computer code. At times when my research seemed

slow going and frustrating, Professor Jørgensen was a source of constant encouragement.

A number of people have helped me through my studies and have made the last four years

a period of time I will look back on with joy. I am afraid that I do not always tell people how I

feel and thank them for their support and friendship. I would in this respect like to thank Dr.

Stinne Høst for many helpful discussions on all things related to wave function optimization.

On a personal note, I appreciate that she took me under her wing and showed me the ropes, as

only a older and wiser PhD student could.

I would like to thank Dr. Branislav Jansik for teaching me regarding a number of technical

issues about compilers,shell scripts, unix systems, etc in addition to being my helpful o�ce mate

through the last four years. Dr. Sonia Coriani and I have had a very fruitful collaboration, and
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know about integral evaluation, I would also like to thank Dr. Erik Tellgren, Dr. Andrew Teale,

and the entire Oslo group for the good times I had in Oslo.

I would like to thank Dr. Pawel Saªek for his assistance with the exchange-correlation

contributions, Professor Kenneth Ruud for his help with excited state optimizations, and Dr.

Andreas Thorvaldsen for the collaboration on damped response theory.

Kasper Kristensen and Joanna Kauczor have during the last three�four years become good

friends and good colleagues. I would especially like to thank Joanna for her moral support and
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Late in my Ph.D. I have collaborated with Dr. Marcin Zióªkowski and would like to thank
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years.
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Chapter 2

Introduction

Since the development of quantum mechanics in the 1920s, the area of quantum chemistry have

transformed from an exotic area of chemistry, being merely of academic interest, into a powerful

and fruitful branch of science, used extensively not only in chemistry and physics, but also in

related branches of science such as molecular biology and drug design. For small molecular

systems, state-of-the-art electronic structure calculations challenge the accuracy obtained from

experiments [3, 4]. Unfortunately, as the size of the molecular systems increase, so does the

required computational e�ort, and high accuracy calculations cannot be carried out for large

molecular systems, but a qualitative calculation can be a useful tool in explaining e.g. reaction

mechanisms. The toolbox of quantum chemistry therefore consist of everything from the com-

putationally cheap qualitative�correct low-accuracy methods to the computationally expensive

high-accuracy methods. Increasing the range of application of these methods will improve the

usefulness of the toolbox provided by quantum chemistry, and increase the impact of quantum

chemistry in the scienti�c community.

To obtain an accurate description of the electronic structure and properties of molecular

systems, the Schrödinger equation must be set up and subsequently solved for a given molecular

system. Since the exact solution to the Schrödinger equation is unattainable for all systems of

chemical interest, approximations are required. A hierarchy of wave function based approxi-

mations provides a diverse set of tools, which range from the qualitative independent�particle

Hartree�Fock (HF) approximation to the highly accurate hierarchy of coupled�cluster (CC)

models.

An alternative approach is Density Functional Theory (DFT). DFT methods have become

very popular, since DFT methods typically constitute a good compromise between cost and

accuracy. The cost of DFT calculations is comparable to that of the simple wave function

model, HF, but their accuracy signi�cantly exceeds that of HF calculations.

A common characteristic of both DFT and wave function models is that in their standard

formulation, their applicability is limited due to a poor scaling with system size. The simple

HF as well as DFT formally have a quartic scaling, with respect to the size of the molecular

system, denoted O(N4), where N is a quantity proportional to the size of the system. The
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consequence is that doubling the size of a molecular system increases the computational time

within the HF model by a factor of 24 = 16, limiting the size of systems that can be treated

using this model. The more accurate CC methods have an even steeper scaling behaviour. For

instance the computational time of the accurate CCSD model scales as O(N6) limiting its use

to molecules containing approximately 40 atoms.

Much e�ort has been directed towards the development and implementation of algorithms

of reduced scaling, ideally linear scaling O(N), such that doubling the system size implies only

a doubling of the computational time. A linear scaling HF and DFT method have successfully

been obtained, but both the HF and DFT methods can be accelerated through the use of

density-�tting, which will be one subject of this thesis.

The present work focuses on two main topics. The �rst topic is how linear scaling may be

obtained in CC theories. The impact of this method is expected to be profound as it will lead

to an unprecedented accuracy and reliability for large molecular systems.

The second topic is how to obtain linear scaling molecular properties within HF and DFT

theories. The calculation of molecular properties within HF or DFT have an inherent quartic

scaling, identical to the standard formulation of the HF wave function optimization. However,

many of the algorithms developed for the wave function optimization, can directly be exploited

to obtain linear scaling molecular properties.

The many linear�scaling developments, which have been implemented in the DALTON pro-

gram over the last decade, have made it necessary to implement a new integral program. This

is a major task, which I have undertaken during my Ph.D., in collaboration with Dr. Simen

Reine. The integral program exploit the current computer architecture and provides a �exible

interface. This is required by, for instance, the linear scaling CC method presented in this thesis.

The implementation of a new integral program have been, and will be, extremely important for

further linear�scaling developments within the DALTON framework. The development of the

new integral code has been a huge personal learning experience, but unfortunately, this work

have not directly resulted in any articles.

This thesis is organized as follows:

Electronic-Structure Theory: We start with a short introduction to electronic structure the-

ory, de�ning terms important in the following chapters on coupled cluster theory and

molecular properties.

Density Fitting: We brie�y summarize the key aspects of paper C, which have been imple-

mented in the new integral code, and is the only paper which directly deals with integral

evaluation.

Coupled Cluster Theory: Following a short introduction to coupled cluster theory, a brief

summary are given concerning the status of reduced scaling coupled�cluster schemes.

The Divide�Expand�Consolidate Coupled Cluster Model: We present the �rst linear-

scaling coupled-cluster method with correlation energy based error control. This chapter is

2



both a review of paperG and a more in depth description of the content of the unpublished

paper H.

Response Theory: We start with an introduction to exact response theory, de�ning a nota-

tion used in the following chapters after which we introduce the damped response theory

published in paper D

Hartree�Fock and Kohn-Sham DFT response theory: We review important aspects of

paper B where we introduced a linear scaling second�quantization�atomic�orbital based

response theory. PaperB deals with both a Hartree-Fock state and time�dependent density

functional theory, but in this chapter we will limit the scope to Hartree-Fock theory. Later

the Hartree-Fock response theory is extended to damped response theory.

Geometric gradients of linear response properties: We summarize the general linear scal-

ing framework for obtaining molecular response properties that can be expressed as �rst

derivative with respect to the nuclear displacements of a generic linear response function,

its poles and its residues, introduced in paper F

Magnetic Circular Dichroism: We introduce the theory of Magnetic Circular Dichroism,

using damped response theory described in the unpublished paper I, and brie�y touch

upon important features of papers A and E. Magnetic Optical Rotation have also been

investigated in paper E, but this subject will not be discussed further in this thesis.

3
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Chapter 3

Electronic-Structure Theory

The electronic energy E of a molecular system is obtained as the eigenvalue of the electronic

time-independent (non-relativistic) Schrödinger equation[5], within the Born-Oppenheimer ap-

proximation

ĤeΨ = EΨ, (3.1)

where the eigenfunction Ψ is called the electronic wave function and contains all information

needed to determine any property of the system. Ĥe is the electronic Hamiltonian which con-

tains the kinetic energy operator for the electrons (T̂e), the external potential arising from the

interaction between the electrons and the stationary nuclei (V̂ne), the interaction between the

electrons (V̂ee), and the constant nuclear-nuclear repulsion term (hnuc)

Ĥe = T̂e + V̂ne + V̂ee + hnuc =

Ne∑

i

ĥi +

Ne∑

i>j

ĝij + hnuc, (3.2)

where Ne is the number of electrons, and ĥi and ĝij are one- and two-electron operators given

by

ĥi = −
1

2
∇2

i −

Nn∑

I

ZI

|RI − ri|
ĝij =

1

|ri − rj |
, (3.3)

where Nn is the number of nuclei, ZI the charge of the nuclei I, |RI − ri| the distance between

nuclei I and electron i and |ri − rj | distance between electron i and j.

In order to solve the Schrödinger equation, the many-electron wave function is traditionally

expanded in terms of Slater determinants, which ensures that the Pauli principle is ful�lled. The

Slater determinants are built from one-electron functions (spin orbitals). The exact solution to

the Schrödinger equation is obtained in the limit of an in�nite number of one-electron functions

and all possible Slater determinants. Since this is not possible in practice, it is necessary to

introduce two approximations. First, a �nite number of one-electron functions (the basis set) is

chosen. Second, only a limited number of all the possible Slater determinants are included in

the wave function expansion.

If all possible Slater determinants are included the method is called the Full Con�guration

interaction (FCI) method, and the solution is exact within the chosen basis set. The method is

5



Electronic-Structure Theory

computationally expensive and intractable for all but the smallest of systems, and is therefore

mainly used for benchmarking other less computationally expensive methods. In the following,

the simplest non empirical of these approximations to the Schrödinger equation are introduced.

3.1 The Hartree-Fock Model

In the Hartree-Fock (HF) model, a single Slater determinant (or a minimal symmetry-adapted

linear combination of Slater determinants, denoted a con�guration state function) is included

in the wavefunction expansion. For a closed-shell system (assumed throughout) of Ne electrons,

the HF wave function ansatz is given by

ΨHF (x1,x2, · · · ,xN ) = |ψ1(x1)ψ2(x2) · · ·ψN (xN )|, (3.4)

where ψ are spin orbitals containing a spatial component φ ( denoted molecular orbitals (MOs))

and a spin component σ

ψi(xi) = φi(r)σ(s). (3.5)

The energy is minimized with respect to variations in the MOs subject to the constraint that

the MOs are orthonormal. This is equivalent to solving a set of e�ective one-electron equations

F̂iφi =
∑

j

ǫijφj , (3.6)

where ǫij are Lagrangian multipliers and the Fock operator F̂ is an e�ective one-electron operator

F̂i = ĥi +
∑

j

(2Ĵj − K̂j), (3.7)

Ĵ and K̂ are the Coulomb and exchange operators, which are most conveniently de�ned through

their action on a MO

Ĵjφi(r1) = φi(r1)

∫
φ∗j (r2)

1

|r1 − r2|
φj(r2)dr2 (3.8a)

K̂jφi(r1) = φj(r1)

∫
φ∗j (r2)

1

|r1 − r2|
φi(r2)dr2, (3.8b)

An in�nite number of MOs ful�ll Eq. (3.6) and Eq. (3.6) may be written in terms of canoni-

cal MOs (CMOs), which diagonalize ǫ. The resulting equation are denoted the canonical HF

equations

F̂iφi = ǫiφi, (3.9)

where ǫi are now interpreted as orbital energies. Since the Fock operator depends on the orbitals,

the HF pseudo-eigenvalue equation of Eq. (3.9) must be solved using an iterative algorithm until

a self consistent solution is found, after which the HF energy can be evaluated as

EHF = 2

Nocc∑

i

hii + 2

Nocc∑

ij

∫
φ∗i (r1)φi(r1)

1

|r1 − r2|
φ∗j (r2)φj(r2)dr1dr2 (3.10)

−

Nocc∑

ij

∫
φ∗i (r1)φj(r1)

1

|r1 − r2|
φ∗j (r2)φi(r2)dr1dr2 + hnuc, (3.11)

6



3.1 The Hartree-Fock Model

where hii are the expectation values of ĥi.

hii =

∫
φ∗i (ri)

(
−

1

2
∇2

i −

Nn∑

I

ZI

|RI − ri|

)
φi(ri)dr1. (3.12)

The Coulomb contribution is a long-ranged contribution which has an inverse distance depen-

dence on the two charge distributions described by |φi(r1)|
2 and |φj(r2)|

2. The exchange con-

tribution is a consequence of the anti-symmetrization of the wave function and is for insulators

a short-ranged contribution, which depend on the spatial separation of the two MOs φi and φj .

The consequence of only using a single Slater determinant is that the instantaneous interac-

tion between electrons are neglected, and thus the electrons interact only through the e�ective

Fock operator, which contains a average potential generated from all other electrons. The HF

model is sometimes denoted a mean-�eld model, as an individual electron only feels the mean

potential generated by the other electrons.

For computational purposes, the MOs are typically expanded in a set of atomic orbitals

(AOs) χµ

φi =
∑

µ

Cµiχµ. (3.13)

Note that throughout this thesis roman letters are used for the orthonormal MOs indices and

greek letters for their atomic counterparts. Inserting this expansion into Eq. (3.9) yields the

Roothaan-Hall equations

FC = SCǫ, (3.14)

where S is the overlap matrix in the AO basis

Sµν =

∫
χ∗

µ(r)χν(r)dr (3.15)

The eigenvector matrix C in Eq. (3.14) contains the MO expansion coe�cients of Eq. (3.13) and

ǫ is a diagonal matrix which contains the orbital energies. F is the Fock matrix in the AO basis

F = h + 2J(D) − K(D), (3.16)

expressed in terms of the one-electron AO density matrix

D = CoC
†
o, (3.17)

where Co denoted the subblock of occupied MO coe�cients. The one-electron core hamiltonian

h, Coulomb J(D) and exchange K(D) matrices is de�ned as

hµν =

∫
χ∗

µ(r1)

(
−

1

2
∇2

1 −

Nn∑

I

ZI

|RI − r1|

)
χν(r1)dr1 (3.18a)

Jµν(D) =
∑

γδ

∫
χ∗

µ(r1)χ
∗
γ(r2)

1

|r1 − r2|
χν(r1)χδ(r2)dr1dr2Dδγ (3.18b)

Kµν(D) =
∑

γδ

∫
χ∗

µ(r1)χ
∗
γ(r2)

1

|r1 − r2|
χδ(r1)χν(r2)dr1dr2Dδγ (3.18c)

7



Electronic-Structure Theory

The diagonalization of the Fock matrix according to Eq. (3.14) yields a set of MOs from which

a new density can be constructed and the iterative procedure is thus established.

The evaluation of the molecular integrals of Eqs (3.18b),(3.18a),(3.18b) and (3.18c) is central

to quantum chemistry, and is often one of the time-limiting steps. This is the subject of the next

section, but before proceeding to this discussion, we note that a number of short hand notations

have been used in the litterature, and we here introduce the Mulliken like notations, used in this

thesis

(f |g) = =

∫
f∗(r1)

1

|r1 − r2|
g(r2)dr1dr2 (3.19a)

(µν|γδ) =

∫
χ∗

µ(r1)χν(r1)
1

|r1 − r2|
χ∗

γ(r2)χδ(r2)dr1dr2 (3.19b)

〈f |w|g〉 =

∫
f∗(r1)w(r1, r2)g(r2)dr1dr2 (3.19c)

gµνγδ =

∫
χ∗

µ(r1)χ
∗
γ(r2)

1

|r1 − r2|
χν(r1)χδ(r2)dr1dr2 = (µν|γδ) (3.19d)

which means that

Jµν(D) =
∑

γδ

(µν|γδ)Dδγ =
∑

γδ

gµνγδDδγ (3.20a)

Kµν(D) =
∑

γδ

(µδ|γν)Dδγ =
∑

γδ

gµδγνDδγ (3.20b)

3.2 Linear-Scaling Hartree-Fock

Each iteration of a wavefunction optimization consists of two steps: the construction of the Fock

matrix of Eq. (3.16), and a construction of the density from the solution to Eq. (3.14).

Linear-scaling methods for obtaining the solution to Eq. (3.14) have been developed and

implemented, but this subject will not be included in this thesis. For extensive reviews see Refs.

[6, 7].

The time dominating step in each iteration is the construction of the Fock matrix. During

the last decades, much e�ort has been directed towards obtaining an e�cient evaluation of each

of the contributions entering the Fock matrix [8�10]. The construction of the AO integrals of

Eqs. (3.18b) and (3.18c) is both of O(N4) complexity. However, due to the exponential decay of

the overlap distribution Ωµν(r) = χµ(r)χν(r) with respect to the square of the distance between

the centers of the two AOs, the number of signi�cant overlap distributions scales as O(N). In

order to preselect the signi�cant integrals, a rigorous upper bound to the absolute value of two-

electron repulsion integrals can be attained by the Cauchy-Schwarz (CS) screening of Häser and

Ahlrichs [11],

|(µγ|δν)| ≤
√

(µγ|µγ)
√

(δν|δν) (3.21)

The application of this inequality therefore reduces the scaling from O(N4) to O(N2). The

CS screening does not, however account for the 1/r12 dependence. This dependence was later
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3.2 Linear-Scaling Hartree-Fock

incorporated into the multipole-based integral estimate (MBIE) of Lambrecht and Ochsenfeld

[12].

For the Coulomb contribution, the scaling is reduced even further, by splitting the total inter-

action into a near-�eld (NF) short-range interaction and a far-�eld (FF) long-range interaction.

The number of NF interactions grows linearly with the size of the system and is intrinsically

linear scaling. the FF interactions grow quadratic with the system size, but using the Fast Mul-

tipole Method (FMM) [13], which was originally developed for point charges, but generalized

to continuous charge distributions in the Continuous Fast Multipole Method (CFMM) [14], the

Generalized-very-Fast-Multipole method (GvFMM) [15], and others [16, 17], linear scaling can

be obtained.

The exchange matrix is intrinsically linear scaling provided that the density�matrix elements

Dγδ decay with distance. This can be seen by noting that the density�matrix elements couple

basis functions belonging to di�erent electrons, thus e�ectively damping the long ranged 1/r12

interaction. The decay behaviour of the density matrix elements may be illustrated introducing

the �rst�order reduced density matrix

ρ(r′, r) =
∑

γδ

χγ(r)χδ(r
′)Dγδ ⇒ Kµν(D) =

∫
χ∗

µ(r1)
ρ(r1, r2)

|r1 − r2|
χν(r2)dr1dr2. (3.22)

For insulators the �rst�order reduced density matrix decays exponentially with distance between

r and r′, for large distances, with the exponent proportional to the band gap of the system. For

conductors, which do not have a band gap, the decay rate is only proportional to some power

of 1/r12. For �nite systems the situation is more complicated, but systems with small HOMO-

LUMO gaps1 behave similarly to conductors, whereas systems with large HOMO-LUMO gaps

behave similarly to insulators.

Combining the CS screening and a reorganization of the integral loop structure, where the

density-matrix elements are included in the integral estimates

|(µγ|δν)Dγδ| ≤
√

(µγ|µγ)
√

(δν|δν) |Dγδ| , (3.23)

leads to a linear scaling evaluation of the exchange matrix �rst implemented in the order N

exchange (ONX) method [18, 19] and then later in the linear-scaling exchange (LinK) [20],

implemented in DALTON [1].

Currently, the time dominating step in each iteration of the wave function optimization is the

construction of the exchange matrix, despite the O(N) scaling, but both the calculation of the

Coulomb and exchange matrix can be accelerated by using density-�tting techniques explained

in chapter 4.

1A HOMO-LUMO gap is the energy di�erence between the highest occupied molecular orbital (HOMO) and

lowest unoccupied molecular orbital (LUMO).
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Electronic-Structure Theory

3.3 Density Functional Theory

In 1964, Hohenberg and Kohn [21] proved the Hohenberg-Kohn theorem, which established that

the exact ground-state electron density

ρ(r) = N

∫
|Ψ(x1,x2, · · · ,xN )|2ds1dx2 . . . dxN , (3.24)

may be uniquely associated with one external potential vext(r) (up to an additive constant).

It follows from the Hohenberg-Kohn theorem that the potential vext(r) is a functional of the

electron density, vext[ρ], and that the ground state energy E0 is a functional of the electron

density, in the sense that the density uniquely determines the external potential, which in turn

determines the energy E0[vext], i.e.

E0[vext] = E0[vext(ρ)] = E0[ρ]. (3.25)

Hohenberg and Kohn further recast the variational principle in terms of the electron density,

E0[vext] = min
ρ

(
F [ρ] +

∫
ρ(r)vext[ρ]dr

)
, (3.26)

where the minimum is constrained to densities that are v-representable1, and F [ρ] is the universal

Hohenberg-Kohn functional, which is independent of the external potential, and de�ned by

F [ρ] = E0[vext[ρ]] −

∫
ρ(r)vext[ρ]dr. (3.27)

The ground state electron density therefore contains all the information needed to reconstruct

the external potential, and hence obtain both the wave function, and the ground state energy.

Unfortunately, the form of the universal functional F [ρ] is not known. In 1965, Kohn and Sham

[22] derived the Kohn-Sham (KS) orbital equations, a set of equations for �nding the density in

a self consistent fashion

ĥi +

∑

j

2Ĵj +
∂Exc

∂ρ(r)


φi =

∑

j

ǫijφj , (3.28)

where the density is given by ρ(r) =
∑

i |φi(r)|2 and Exc is the unknown exchange-correlation

energy. However, various approximate exchange-correlation functionals have been developed.

The construction of exchange-correlation functionals is a key aspect of DFT, but this topic will

not be discussed in this thesis. Eq. (3.28) is similar to the HF orbital equation of Eq. (3.6) and

one may in a similar manner obtain a matrix equation formulation of the KS orbital equations

FKSC = SCǫ, (3.29)

where FKS is given by

F = h + 2J(D) + Fxc(D), (3.30)

1An electron density is termed v-representable if it is associated with the ground state wave function of an

electronic Hamiltonian Ĥ = T̂ + V̂ee +
P

i vext(ri).

10



3.3 Density Functional Theory

where Fxc is the exchange-correlation matrix in the AO basis

F xc
µν(D) =

∫
χ∗

µ(r1)χν(r2)vxc(r)dr =

∫
χ∗

µ(r1)χν(r2)
∂Exc[ρ]

∂ρ(r)
dr. (3.31)

Here we have implicitly de�ned the exchange-correlation potential vxc(r) using

ρ(r) =
∑

µν

χ∗
µ(r)χν(r)Dνµ. (3.32)

Eq. (3.29) is very similar to Eq. (3.14) and the algorithm for solving Eq. (3.29) is identical, once

the Kohn�Sham matrix of Eq. (3.30) have been built instead of the Fock matrix of Eq. (3.16),

and theory developed for HF can therefore almost directly be applied to KS DFT theory as well,

and HF and DFT are both denoted Self-Consistent-Field methods.

The most popular DFT functionals are of a local nature, and it should therefore be possible

to obtain linear scaling. However, the exchange-correlation matrix is evaluated by numerical

integration and the complexity depends both on the number of grid points and basis functions.

By using partition functions to decompose the integrals, Pérez-Jordá and Yang [23] presented an

O(N) scheme which is independent of the number of basis functions, and Stratmann et al.[24]

developed an e�cient atomic weight scheme for fast linearly scaling evaluation of the exchange-

correlation contribution, and other methods have since been developed [25, 26], and this issue

will not be discussed any further in this thesis.

Having established the basic theory and notation we may continue with the theory of density-

�tting in the next chapter.
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Chapter 4

Density Fitting

The evaluation of the molecular integrals of Eqs. (3.20a) and (3.20b) is often one of the time-

limiting steps in quantum chemistry. Therefore approximations of these integrals have, in ad-

dition to improved integral evaluation schemes, been a concern from the early developments

of quantum chemistry. The density-�tting methods (also called resolution�of�the�identity (RI)

methods), have today been established as highly successful for approximating the Coulomb con-

tribution (Eq. (3.18b)). The density-�tting approximation is today most often tributed to the

1973 contributions of Whitten [27] and of Baerends, Ellis and Ros [28], and to the develop-

ments by Dunlap, Connolly and Sabin [29, 30] in 1979, despite earlier contributions [31�35].

Density-�tting was originally introduced to accelerate the evaluation of the Coulomb matrix,

but Weigend et al. [36] later extended the methodology to the exact exchange matrix.

In density-�tting the expensive evaluation of four-center integrals is replaced by the evalua-

tion of two- and three-center integrals, and a set of linear equations for the �tting coe�cients.

Speed-ups in the range 3-30 are commonly observed [37], with errors well within the basis-set

errors. Typical errors due to density �tting are about two orders of magnitude smaller than the

basis-set errors.

In density �tting the electronic density of Eq. (3.32) is approximated by an expansion in

single atom-centered auxiliary basis functions according to

ρ(r) ≈ ρ̃(r) =
∑

α

ξα(r)cα, (4.1)

where the tilde denotes an approximate quantity. The density and the �tted density, di�er by

an error ∆ρ

ρ(r) = ρ̃(r) + ∆ρ (4.2)

Alternative to Eq. (4.1), individual overlap distributions Ωµν(r) = χµ(r)χν(r) can be expanded

in single auxiliary basis functions

Ωµν ≈ Ω̃µν =
∑

α

ξα(r)cµν
α . (4.3)

Examining Eq. (4.1) and Eq. (4.3) we obtain the relation

cα =
∑

µν

Dµνc
µν
α . (4.4)
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Density Fitting

Di�erent density �tting methods di�er mainly in how the �tting coe�cients cα or cµν
α are deter-

mined, and how the approximated overlap distributions are introduced into the expressions for

integrals, the Coulomb matrix, or the Coulomb energy.

4.1 Robust and Variational Density Fitting

In this section we describe how a robust and variational �t can be obtained. According to [38]

a robust �t is de�ned as a �tting method which correct the target function to �rst order in the

error made by the �t. Using Eqs. (4.1) and (4.2) the Coulomb energy may be determined:

EJ =
1

2
(ρ|ρ) =

1

2
(ρ̃|ρ̃) + (ρ̃|∆ρ) +

1

2
(∆ρ|∆ρ). (4.5)

If the �tting coe�cients are determined in a manner, which ensures that the second term (ρ̃|∆ρ)

vanish, the �t constitutes a robust �t. Neglecting the second order term and �nding the sta-

tionary points with respect to the �tting coe�cients we obtain.

∂

∂cα

(
1

2
(ρ̃|ρ̃) + (ρ̃|∆ρ)

)
= 0 ⇒

∑

β

(α|β)cβ = (α|ρ) ⇒ (µ̃ν|∆ρ) = 0 (4.6)

Which ensures (ρ̃|∆ρ) = 0, and thereby a robust �tting procedure if the �tting coe�cients are

obtained from Eq. (4.6).

It may be more convenient to �t the individual four-center integrals, and Dunlap [38] sug-

gested the approximation

(µν|γδ) ≈ ˜(µν|γδ) = (µν|γ̃δ) + (µ̃ν|γδ) − (µ̃ν|γ̃δ), (4.7)

where the �tting coe�cients cµν
α are determined from Eq. (4.7) according to

∂ ˜(µν|γδ)

∂cµν
α

= 0 ⇒
∑

β

(α|β)cγδ
β = (α|γδ) ⇔ (α|∆γδ) = 0 (4.8)

which is equivalent to Eq. (4.6) using Eq. (4.4). Eqs. (4.7) and (4.8) constitutes a robust �tting

procedure as the expression for the �tted Coulomb energy, is correct to second order in the

�tting error

ẼJ =
1

2
(ρ|ρ̃) +

1

2
(ρ̃|ρ) −

1

2
(ρ̃|ρ̃) =

1

2
(ρ̃|ρ̃) + (ρ̃|∆ρ) =

1

2
(ρ̃|ρ̃), (4.9)

It may also be shown that any function of ˜(µν|γδ) including the Coulomb and Exchange energy

is variational with respect to the �tting coe�cients cµν
α , if the �tting coe�cients are determined

from Eq. (4.8), i.e.

∂f( ˜(µν|γδ))

∂cµν
α

=
∂f( ˜(µν|γδ))

∂ ˜(µν|γδ)

∂ ˜(µν|γδ)

∂cµν
α

= 0. (4.10)

We may therefore obtain a robust and variational �tting method if the approximation in Eq. (4.7)

is used and the �tting coe�cients are determined from Eq. (4.8). The variational feature ensures

a continuous potential energy surface, important for the calculation of molecular properties.
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4.2 Linear Scaling Robust and Variational Density Fitting

The �tted Coulomb matrix may be obtained by di�erentiation of the approximate Coulomb

energy with respect to the density matrix elements or simply by replacing the four-center inte-

grals of Eq. (3.18b).

J̃µν =
∂ẼJ

∂Dνµ
= (µν|ρ̃) + (µ̃ν|ρ) − (µ̃ν|ρ̃) = (µν|ρ̃) + (µ̃ν|∆ρ) = (µν|ρ̃) (4.11)

The exchange matrix may be obtained in a similar manner

Kµν(D) =
∑

γδ

˜(µδ|γν)Dδγ =

Nocc∑

i

∑

γδ

˜(µδ|γν)CγiCδi

=

Nocc∑

i

∑

γδ

(∑

α

(µδ|α)cγν
α +

∑

α

cµδ
α (α|γν) −

∑

α

∑

β

cµδ
α cγν

β (α|β)

)
CγiCδi (4.12)

Using Eq. (4.8) we may obtain the simpli�ed equation

Kµν(D) =

Nocc∑

i

∑

γδ

(∑

α

(µδ|α)cγν
α

)
CγiCδi. (4.13)

4.2 Linear Scaling Robust and Variational Density Fitting

For large molecular systems the �tting procedure in section 4.1 becomes problematic, due to the

cubic scaling nature of the �tting equations (Eq. (4.8)).

When approximating the Coulomb matrix, this only becomes a problem for large systems

of typically more than 10000 auxiliary basis functions, due to the low prefactor associated with

these equations.

For the exchange matrix the di�erent contraction and transformation steps becomes the

computational bottleneck due to an O(N4) scaling, and the large number of signi�cant auxiliary

functions which must be included in the expansion of the overlap distribution.

Within the �eld of density-�tting two di�erent approaches have been implemented to achieve

linear scaling. The �rst is based on the use of a local metric [28, 39, 40], and the second is based

on a spatial partitioning of the electron density [28, 37, 41]. The method presented in paper C

is based on a local metric and spatial partitioning will therefore not be discussed in this thesis.

Using a local metric, the �tting coe�cients can be determined from a sparse set of linear

equations, instead of the non-sparse set of linear equations (Eq. (4.8)). Exploiting the sparsity

these sparse equations linear scaling can be obtained.

Using a local metric w(r1, r2) we may determine the �tting coe�cients according to

∑

β

〈α|w|β〉cγδ
β = 〈α|w|γδ〉 ⇔ 〈α|w|∆γδ〉 = 0, (4.14)

with |∆γδ〉 = |γδ〉 − |γ̃δ〉. However, using this equation to determine cµν
β means that the

approximation of Eq. (4.7) no longer lead to a robust �t, nor a variational energy expression.
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Density Fitting

To make the integral in Eq. (4.7) variational in the �tting coe�cients, we use Lagrange's

method of undetermined multipliers, treating Eq. (4.14) as constraints on the integral. Multi-

plying these constraints by multipliers c̄µν
α and adding the resulting expressions to Eq. (4.7) we

obtain

˜(µν|γδ) = (µν|γ̃δ) + (µ̃ν|γδ) − (µ̃ν|γ̃δ) −
∑

α

c̄µν
α 〈α|w|∆γδ〉 −

∑

α

c̄γδ
α 〈∆µν|w|α〉. (4.15)

Di�erentiating Eq. (4.15) with respect to the �tting coe�cients and setting the result equal to

zero, we obtain the following linear equations for the multipliers

∑

α

〈β|w|α〉c̄γδ
α = (β|∆γδ) ⇒

∑

α

〈β|w|α〉c̄α = (β|∆ρ); c̄α =
∑

µν

Dµν c̄
µν
α . (4.16)

For the approximate Coulomb matrix the above approximation gives

J̃ = (µν|ρ̃) + (µ̃ν|∆ρ), (4.17)

which includes a �rst-order correction term, making the approximation correct to �rst order.

Note that the second term vanishes in the Coulomb metric (Eq. (4.11)), due to Eq. (4.8).

Linear scaling robust and variational density-�tting can thus be achieved by replacing the

cubic-scaling equations for obtaining the �tting coe�cients using the Coulomb metric with an

additional evaluation of the sparse two� and three�center integrals, and two sets of sparse linear

equations, using a sparse metric w(r1, r2). The algorithm is outlined in Fig. 4.1

Turning our attention to the exchange contribution, we see that by examining Eq. (4.12)

and Eq. (4.14) we notice that similar to the LinK method, all integrals (µγ|δν) where the

density-matrix elements become su�ciently small can be neglected (see Eq. (3.23)). Therefore,

the �tted integrals ˜(ac|bd) of (ac|bd) is only required whenever

√
(ac|ac)

√
(bd|bd) |Dcd| ≥ ǫ, (4.18)

for a given threshold ǫ. The individual contributions in Eq. (4.12) may also be determined in

a linear scaling manner, noting that the number of �tting coe�cients cµγ
α scales linearly with

system size, as auxiliary basis functions ξα(r) su�ciently far away from the product overlaps

Ωµγ(r) do not contribute to the �tted product overlap Ω̃µγ(r) [39].

The combined e�ects of locality in the density matrix and locality in the �t imply that

the number of contributing three-center integrals (µγ|α) scales linearly with system size. The

same argument holds for the two-center integrals appearing in the last term of Eq. (4.12). The

algorithm is outlined in Fig. 4.2

4.3 Results

The linear-scaling robust and variational �tting procedure of Section 4.2 was applied to the

benchmark set of Peach et al. [42]. Both a overlap and a Coulomb metric was examined, and for

the Coulomb contribution, the overlap metric gave errors in the energy, which was only around
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4.3 Results

Initialization: Non-Coulombic metric w

Calculate 〈α|w|β〉 and construct the inverse

Each iteration: Fitted Coulomb matrix J̃µν

Calculate 〈α|w|ρ〉 = 〈α|w|γδ〉Dγδ

Construct cα = 〈α|w|β〉−1〈β|w|ρ〉

Calculate intermediate J̃I
µν =

∑

α

(µν|α)cα = (µν|ρ̃)

Calculate (α|ρ) =
∑

γδ

(α|γδ)Dγδ

Calculate (α|ρ̃) =
∑

α

(α|β)cβ

Construct (α|∆ρ) = (α|ρ) − (α|ρ̃)

Construct c̄α = 〈α|w|β〉−1(β|∆ρ)

Calculate second intermediate J̃II
µν = (µ̃ν|∆ρ) = cµν

α (α|∆ρ) =
∑

β

cµν
α 〈α|w|β〉c̄β

Finalize �tted Coulomb matrix J̃µν = J̃I
µν + J̃II

µν

Figure 4.1: Outline of the algorithm employed for �tting the Coulomb matrix in a local metric.

Note that the word calculate is used when integrals are evaluated. When both the Coulomb and

Exchange matrix are calculated it is more convenient to follow a procedure more closely related to

the outline for the construction of the exchange matrix in Fig. 4.2

Initialization Non-Coulombic metric w

Construct Gw
ab =

√
〈ab|w|ab〉 and Gw

α =
√
〈α|w|α〉

Normalize {ξα} in metric w (i.e. division with Gw
α )

Construct 〈α|w|β〉 and decompose to 〈α|w|β〉±
1
2

Construct 〈ab|w|α〉 ≥ Gw
abG

w
α = Gw

ab

Orthogonalize the auxiliary basis according to cab
α′ = 〈ab|w|α′〉 =

∑
α 〈ab|w|α〉 〈α|w|α′〉−

1
2

Each iteration Fitted exchange matrix K̃ab

Construct Cholesky MO's by Cholesky decomposition of density matrix, Dab =
∑

occ

i LaiLbi

MO half-transform according to cai
α′ =

∑
b c

ab
α′Lbi, and (ai|α′) =

∑
b Lbi(ab|α

′)

Build intermediate K̃I
ab =

∑
iα′(ai|α′)cbiα′

Build intermediate K̃II
ab = K̃I

ab +
∑

iα′ cai
α′(bi|α′)

Finalize �tted exchange matrix K̃ab = K̃II
ab −

∑
iα′β′ cai

α′(α′|β′)cbiβ′

Figure 4.2: Outline of the algorithm employed for �tting the exchange matries in a local metrics.
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two times larger than when using the regular Coulomb metric; even when using auxiliary basis

sets optimized for �tting in the Coulomb metric.

The errors introduced in the linear scaling robust and variational density-�tting method are

therefore well within the regular basis-set error, and no signi�cant loss of accuracy occurs when

going from the robust and variational density-�tting method of Section 4.1 compared to the

linear scaling version presented in Section 4.2.

Application of integral �tting to the calculation of Coulomb and exchange matrices pro-

vides a dramatic speedup of calculations. This is evident from Table 4.1 which presents exam-

ple timings for B3LYP/cc-pVTZ(df-pVTZ) calculation on naphthalene, both with and without

density-�tting. In both the Coulomb and exchange matrix cases, the evaluation is accelerated

by approximately a factor 30 (when distributing the initialization evenly among the 14 Coulomb

and exchange matrix construction) in agreement with what is commonly observed [37].

Table 4.1: Timings for a complete B3LYP/cc-pVTZ(df-pVTZ) calculation of the naphthalene

molecule. The calculation converged in 14 SCF iterations. The timings were measured using a

development version of Dalton [1].

Method Initialization [s] Coulomb [s/iter] exchange [s/iter]

J-engine + LinK 408 1394

Coulomb and exchange �tting 269 1.2 33.1

4.4 Conclusion

In this section, we studied the variational density-�tting technique of �tting the four-center

two-electron integrals needed for calculation of Coulomb and exchange matrices.

We propose to use a local metric, which yields a sparse linear set of equations for �tting

coe�cients, allowing for their determination in time proportional to the system size. The method

maintains the dramatic speedup commonly observed for density-�tting procedures. We show

that a local metric can be chosen so that the accuracy of the calculation does not su�er. In the

derivation of the formula, we enforce the variation principle, important for molecular properties.
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Chapter 5

Coupled Cluster Theory

The HF method focuses on describing an average interaction of an electron with the �eld gen-

erated by all other electrons. The description of the electron-electron interaction is therefore

severely limited and neglects the fact that the Coulomb interaction keeps the electrons instan-

taneously apart and thus that their motion is correlated. The e�ect of electron correlation must

therefore be included to obtain chemical accuracy. The correlation energy Ecorr is usually de-

�ned as the di�erence between the exact energy Eexact of the N -electron system and the HF

energy EHF

Eexact = EHF + Ecorr. (5.1)

A common way to include the e�ect of electron correlation, is to include several Slater determi-

nants in the wave function expansion. Many such methods have been proposed, among which

the most successful is the coupled cluster (CC) method. In this context we introduce the CC

correlation energy ECC,corr as

ECC = EHF + ECC,corr. (5.2)

The basic idea of CC theory is to include all the possible excited Slater determinants of a given

reference wave function (e.g. the HF wave function). We de�ne the cluster operator T̂ as

T̂ =
∑

µ

tµτ̂µ (5.3)

where τ̂µ is a general excitation operator with a corresponding amplitude (expansion coe�cient)

tµ. The cluster operator can be divided into terms containing a particular order of excitation, i.e.

single (excitation of a single electron to an excited state), double (excitation of two electrons),

triples and so on. This partitioning may be written as

T̂ = T̂1 + T̂2 + T̂3 + T̂4 + · · · (5.4)
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where T̂1 is an operator performing single excitations etc.

T̂1 =
∑

ai

tai a
†
aai (5.5)

T̂2 =
∑

a>b
i>j

tab
ij a

†
aaia

†
baj (5.6)

...

T̂N =
∑

a>b>c>···

i>j>k>···

tabc···
ijk···a

†
aaia

†
baja

†
cak · · · (5.7)

where i, j, k refer to occupied indices, and a, b, c refer to unoccupied indices. We have in Eqs.

(5.5)-(5.7) used the language of second quantization [43], and we expect the reader to be familiar

with this formulation. We refer to tai and tab
ij as single and double cluster amplitudes, respectively.

In terms of the cluster operator, the CC exponential ansatz is given as

|CC〉 = exp(T̂ )|HF〉 (5.8)

where the Dirac bra-ket notation was introduced and this notation will be used extensively in

the next chapters. The exponential operator may be expanded in a Taylor series

exp(T̂ ) = 1 + T̂ +
1

2
T̂ 2 +

1

6
T̂ 3 + · · · (5.9)

Traditionally, the cluster operators of Eq. (5.9) are collected into sets which generate excited

states with the same level of excitation, such as singles excitations S, doubles D, triples T, and

so on

exp(T̂ ) = 1 + T̂1︸︷︷︸
S

+

(
T̂2 +

1

2
T̂ 2

1

)

︸ ︷︷ ︸
D

+

(
T̂3 + T̂2T̂1 +

1

6
T̂ 3

1

)

︸ ︷︷ ︸
T

+ · · · (5.10)

Inserting the CC wave function ansatz into the Schrödinger equation, we obtain

Ĥ|CC〉 = ECC |CC〉 (5.11)

Ĥ exp(T̂ )|HF〉 = ECC exp(T̂ )|HF〉 (5.12)

In contrast to the HF method, which is based on the variational principle, the CC method is

usually based on projecting the reference wave function 〈HF| against Eq. (5.11) to obtain the

energy

ECC = 〈HF|Ĥ|CC〉 (5.13)

and projecting the excited states 〈µ| combined with an exponential cluster operator against

Eq. (5.12) to obtain a set of amplitude equations

〈µ| exp(−T̂ )Ĥ exp(T̂ )|HF〉 = 0 (5.14)

Since the presented CC equations include all levels of excitations, the obtained wave function

therefore includes all possible Slater determinants and is equivalent to the FCI wave function.
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The application of these equations is only possible for small molecules, but the cluster operator

of Eq. (5.4) can be truncated. The truncations in the cluster operator are carried out by

including excitations up to a particular level in Eq. (5.4). The exponential ansatz ensures

that all excited state manifolds are included in the description independent on the level of

truncation (see Eq. (5.10)). An important and related feature of CC theory is that the CC wave

function obtained from a truncated cluster operator is size-extensive [43]. The truncations yields

a hierarchy of CC methods denoted CCS1,CCSD2 [44],CCSDT3 [45],.., which o�ers a systematic

way of improving the description of the wave function, until eventually the FCI wave function is

obtained. The energy expression for all CC methods (independently of truncation level) may be

given explicitly in terms of single and double cluster amplitudes, but no higher order amplitudes.

Ecorr =
∑

ijab

(
tab
ij + tai t

b
j

)
(2giajb − gibja) , (5.15)

The hierarchy of CC methods can be expanded by including approximate methods, which rely

on perturbative corrections for higher order of excitations (e.g. MP24 [46], CCSD(T)5 [47],

..., which provide an excellent compromise between accuracy and cost. The full hierarchy of

approximate methods of the CC theory are among the most trusted and reliable methods, due

to the systematic error control, and the highly accurate results that can be obtained using these

methods. CC methods can thus be used as a tool to predict and explain experimental data.

5.1 Reduced Scaling Coupled Cluster Method

The CC methods are computationally expensive and their scaling behavior prohibits the appli-

cation of CC methods in their standard implementation for large molecular systems. During

the last decade, much e�ort have been directed towards developing a formulation of CC theory

with a reduced scaling behavior, but until now no formulation has been able to maintain the

systematic error control that lead to the predictive power and success of CC theory. The Divide�

Expand�Consolidate (DEC) CC method, which is the subject of the next chapter, does provide

both linear-scaling and highly systematic error control. Before proceeding to this discussion of

the DEC method we �rst look at some of the reduced-scaling methods

The optimal method should ful�ll the requirements for a linear�scaling CC method, para-

phrasing Prof. M. Head-Gordon [48]

• Computational requirements: The Computation time, required disk space and random

access memory should scale at most linearly with increasing the size of the molecular system

1the coupled�cluster�singles
2the coupled�cluster�singles�doubles
3the coupled�cluster�singles�doubles-triples
4the second�order Møller-Plesset�perturbation�theory. Original a method of its own, it was later shown to

be the second order wavefunction according to Coupled-cluster perturbation theory, it is therefore in this thesis

considered as a CC method.
5the coupled�cluster�singles�doubles with perturbative triples
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• Basis set: The algorithm should employ a non-redundant basis set. The basis set should

not contain any linear dependencies or singularities.

• Potential energy surface (PES): A PES should be a smooth function of the nuclear

coordinates.

• Parameters The theory should not include any ad-hoc parameters and should recover

the CC energy. The algorithm should not include any adjustable parameters such as

thresholds, cuto� lengths, or selection criteria that a�ect the result. The algorithm should

keep al features of the standard formulation with respect to the input provided by the

user, and thus maintain the black-box feature of the CC methods.

• Size-extensivity The theory should maintain the size-extensivity property of CC theory

• Wave function The algorithm should be general and provide the total energy of the

molecular system, the wave function, and molecular properties such as molecular gradient.

Almlöf [49, 50] proposed how reduced scaling may be obtained in MP2 by applying a Laplace

transformation to the energy denominator. This idea was implemented by other groups and

linear scaling was obtained by Lambrecht et al. [51�53] by applying a rigorous multipole based

integral estimates [12, 54] to obtain a state-of the-art Laplace-MP2 method, which do ful�ll the

requirements of a linear scaling method, although no molecular gradients have been presented.

A Laplace transform may only be applied to the simplest correlated methods like MP2 [46] and

CC2 [55] and another more general strategy must be employed to the hierarchy of CC methods.

During last decades, there has been an extensive amount of research in this area, and the

intent in this section, is not to cover all developed methods, but to discuss some general aspects

of these methods.

the standard CC calculations are expressed in the canonical HF basis. This is a highly

delocalized basis where the individual HF orbitals extend over the whole molecular system. The

description of local phenomena using a non�local basis is the reason for the high computational

scaling of CC methods. To reduce the computational scaling, it has been attempted to express

the CC wave function in a basis of local HF orbitals.

Local occupied orbitals may be obtained using the Least-Change algorithm [56] or by apply-

ing a standard localization procedure for the canonical occupied HF orbitals [57�65]. However,

for the unoccupied HF orbital space, existing localization strategies have failed to give a set of

local orbitals [56, 66]. So far, the only reliable way to obtain a local set of unoccupied MOs is

by using the recently developed Least-Change method [56].

In the absence of local unoccupied HF orbitals various solutions have been proposed to

bypass the problem of not having a set of local unoccupied HF orbitals, usually by projecting

the occupied component out of the AO basis, thereby obtaining a non-redundant non�orthogonal

basis.

After the pioneering work of Pulay in 1983 [67], Pulay and Saebø [68] introduced local

correlation methods, based on local occupied molecular orbitals. This idea was adopted and
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extended by a number of other groups [69�74], and linear scaling implementation was obtained

using this methodology [71, 75�77].

A number of alternative reduced scaling coupled-cluster models have also been suggested over

the last decades [78�84], e.g. the natural linear scaling approach [80], the cluster-in-molecule

approach [81],the divide-and-conquer approach [82],the fragment MO approach [83], and the

incremental approach [84].

The goal of all these reduced scaling CC methods have been to capture the major part of

electronic correlation by exploiting the locality of electron correlation, meaning that the number

of non-negligible amplitudes increases only linearly with the molecular system. The methods are

therefore not a reformulation of the CC methods, and will not give the CC energy. Instead the

reduced scaling CC methods are formulations where the reduce scaling is obtained through sever

approximations and cuto� lengths, which recover around 99% of the CC correlation energy, at

impressive computational speeds. If the thresholds and selection criteria were chosen su�ciently

conservative the CC energy would be obtained, but this would signi�cantly a�ect the e�ciency

and scaling of the models. In the reduced-scaling CC methods the error control in the correlation

energy is in general lost. This may be due to a hardwired physical fragmentation of the molecular

system. It may also be due to an a priori assignment of local orbital spaces which introduce local

domain errors in the correlation energy for example when the completeness criteria of Pulay and

Boughton [85] is used to assign �xed excitation spaces to the occupied HF orbitals. None of

these methods therefore ful�ll all the requirements of a linear-scaling CC model, in contrast to

the Divide�Expand�Consolidate CC method presented in chapter 6
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Chapter 6

The Divide�Expand�Consolidate

Coupled Cluster Model

In a standard CC calculation, cluster amplitudes are determined by solving the cluster amplitude

equations of Eq (5.14). The error in the calculated CC correlation energy is proportional to the

threshold that is used for the residual norm in the cluster amplitude equations. The threshold for

the residual norm thus controls the error in the correlation energy, and tightening this threshold

gives a more precise correlation energy. The error control in the correlation energy is important

as energy derivatives then become well�de�ned, and one can obtain e.g. nuclear forces that are

continuous on a potential energy surface. In the reduced scaling CC Methods of Section 5.1 the

error control have been sacri�ced for speed and linear scaling.

In this section, a linear-scaling CC method with full error control is presented. The algorithm

is denoted the Divide�Expand�Consolidate (DEC) model.

In the DEC model, the CC wave function is expanded in a set of local occupied and un-

occupied HF orbitals [56]. In this local basis, a CC calculation on a large molecular system

can be expressed in terms of CC calculations on small fragments of the full MO space. The

determination of the fragments is black-box in the sense that no user-provided fragmentation

of the molecule is necessary; rather, the orbital spaces are carefully selected and expanded to

give fragment energies to a preset energy threshold. Adding these fragment energies yields the

correlation energy of the full molecular system. Error control in the correlation energy is ob-

tained because the precision of the total correlation energy is determined by the preset energy

threshold for the fragment energies.

The algorithm is denoted the Divide�Expand�Consolidate method because the MO space is

initially divided among the atomic sites. These orbital spaces are then used to generate atomic

fragment orbital spaces, which are in turn expanded and optimized to give consolidated fragment

energies, which are converged to a preset energy threshold. The fragment energies add up to

the full CC correlation energy with an error in the correlation energy that is proportional to the

energy threshold of the fragment energies.

In the following sections it is shown how a CC calculation on a large molecular system can
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I V

Full molecular 
unoccupied spaceW ...

...P Q R S T U WK L M NJ

I J K L M N P Q R S T U V

Atomic 
fragment P

Full molecular 
occupied space

Figure 6.1: Molecular system divided into atomic sites I,J, . . . ,P, . . . where each site has been

assigned a set of occupied (light blue) and a set of unoccupied (light red) HF orbitals. Each column

of squares represents an atom, the lower and upper square represents the occupied and unoccupied

orbitals assigned to that atom

be expressed in terms of CC calculations on small fragments of the full MO space.

In Section 6.1, we examine the correlation energy expression in Eq. (5.15), and then in

section 6.2, we discuss the amplitude equations in Eq. (5.14). In Section 6.3 the optimization

of excitation spaces is discussed. In section 6.4 linear scaling is discussed, and in Section 6.5

various details about the DEC model are described. Finally an overview of the spaces employed

in a DEC calculation is given in Section 6.6, and results are presented in 6.7.

6.1 The Coupled Cluster Energy for Local Hartree�Fock Orbitals

In a conventional CC calculation the CC wave function is expanded in the non�local canonical

HF orbital basis [56], and therefore all integrals and cluster amplitudes in Ecorr (Eq. (5.15)) are

non�vanishing. The evaluation of Ecorr therefore has a fourth power scaling in system size.

The scaling can be reduced by using a local HF orbital basis. For each local HF orbital i,

we determine the gross Mulliken charge [61] on all atoms A

Qi
A =

∑

µ∈A

∑

ν

CµiCνiSµν , (6.1)

and assign the orbital to the atomic site with the largest Mulliken charge. In this way, each

atomic site is assigned a set of local occupied and a set of local unoccupied HF orbitals. The set

of occupied HF orbitals assigned to atomic site P is denoted P and the set of unoccupied HF

orbitals assigned to atomic site P is denoted P .

A cartoon illustrating how a one�dimensional molecular system is divided into atomic sites

and assigned a set of occupied and unoccupied HF orbitals is given in Fig. 6.1.

Having assigned the local HF occupied and unoccupied orbitals to atomic sites, the correla-

tion energy in Eq. (5.15) can be expressed in terms of atomic fragment energies EP and atomic

pair fragment energies EPQ

EP =
∑

ij∈P
ab

(
tab
ij + tai t

b
j

)
(2giajb − gibja) , (6.2)
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EPQ =
∑

ij∈P∪Q

ab

(
tab
ij + tai t

b
j

)
(2giajb − gibja) , (6.3)

giving

Ecorr =
∑

P

EP +
∑

P>Q

∆EPQ , (6.4)

where the sums run over atomic sites and where the pair fragment interaction energy ∆EPQ is

de�ned as

∆EPQ = EPQ − EP − EQ . (6.5)

The sum over the two occupied orbital indices in Eq. (5.15) is in Eq. (6.4) replaced by sums

over the occupied orbitals of the atomic fragments and atomic pair fragments. Eq. (5.15) is

therefore equivalent to Eq. (6.4). Eq. (6.4) may be reminiscent of the Bethe-Goldstone expansion

introduced into quantum chemistry by Nesbet [86, 87], and used in the incremental scheme, but

neither the theory nor the basic idea is the same a that of the incremental scheme.

The �rst term in Eq. (6.4) describes the electron-electron interaction while the second term

for larger PQ distances describes dispersion e�ects. In the local HF orbital basis, the integral

giajb is non-vanishing only if the orbital pair indices ia refer to the same atomic site or atomic

sites in the neighborhood of each other and similarly for jb. Therefore the integral giajb is non-

vanishing only if i ∈ P and a ∈ [P ], where [P ] refers to the unoccupied HF orbital space in the

neighborhood of P (including P ) and similarly for jb. The requirements for a non-vanishing

integral may thus be summarized as.

giajb : i ∈ P , a ∈ [P ] , j ∈ Q , b ∈ [Q] ∀P,Q (6.6)

When the atomic fragment energy EP in Eq. (6.2) is calculated, both occupied indices belong

to the atomic site P . Since the integral (2giajb − gibja) in EP is non-vanishing only if a, b ∈ [P ],

we may restrict the virtual index summation in Eq. (6.2) and evaluate EP as

EP =
∑

ij∈P

ab∈[P ]

(
tab
ij + tai t

b
j

)
(2giajb − gibja) , (6.7)

where the summation over the unoccupied indices has been restricted to atomic sites which are

local to P . Similarly, the locality of the integral (2giajb − gibja) in Eq. (6.3) implies that the

atomic pair fragment energy EPQ may be evaluated as

EPQ =
∑

ij∈P∪Q

ab∈[P ]∪[Q]

(
tab
ij + tai t

b
j

)
(2giajb − gibja) , (6.8)

where the unoccupied index summation has been restricted to the union of unoccupied spaces

which are local to P and Q. Note that the orbital space for evaluating EPQ is the union of

orbital spaces for evaluating EP and EQ.

The atomic fragment energy EP depends on the singles and doubles amplitudes

tai : i ∈ P , a ∈ [P ] , (6.9a)

tab
ij : i, j ∈ P , a, b ∈ [P ] , (6.9b)
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Figure 6.2: Molecular fragment P . The atomic fragment energy EP is evaluated using the e�ective

occupied (dark blue) and unoccupied (dark red) space, denoted energy orbital space (EOS).

The orbital space de�ned by Eq. (6.9) will be denoted the atomic fragment energy orbital space

(atomic fragment EOS)

The atomic pair fragment energy EPQ depends on the singles and doubles amplitudes

tai : i ∈ P ∪Q , a ∈ [P ] ∪ [Q] . (6.10a)

tab
ij : i, j ∈ P ∪Q , a, b ∈ [P ] ∪ [Q] . (6.10b)

and the orbital space de�ned by Eq. (6.10a) will be denoted the atomic pair fragment EOS.

EP and EPQ can be determined by carrying out calculations referencing small fragments of the

full MO space. An illustration of the orbital spaces that are in use when the atomic fragment

energy EP is evaluated is displayed in Fig. 6.2

6.2 The Coupled Cluster Amplitude Equations for Local Hartree�

Fock Orbitals

Eq. (6.7) and Eq. (6.8) both depend on CC amplitudes and in order to ensure that the amplitudes

that determine EP and EPQ are accurately determined we �nd that the CC calculation which

determines the amplitudes must include bu�er regions for the occupied and unoccupied space.

PaperH presents a thorough locality analysis of the amplitude equations for MP2 and CCSD

models. The purpose of the locality analysis is to show that bu�er regions must be included in

the amplitude equations to justify that the amplitude equations can be carried out in terms of

calculations referencing only small fragments of the full MO space.

In this context we simply summarize the results and refer the reader to paper H for more

details.

The MP2 amplitude equations must be solved in an iterative fashion due to the non-

orthogonality of the local HF orbitals1. Using such an iterative algorithm, the MP2 amplitude

equations may be solved in the amplitude orbital space (AOS)

FP = [P ] + [[P ]] FPQ = FP ∪ FQ (6.11)

1The non-orthogonality is discussed in section 6.5.1
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Figure 6.3: Molecular fragment P . The correlated wave function calculation is carried out using

the amplitude orbital space FP (blue and red markings), while the atomic fragment energy EP is

evaluated using the e�ective occupied (dark blue) and unoccupied (dark red) space.

where [[P ]] refers to unoccupied orbitals assigned to atoms that are local to [P ] (including [P ]

itself). The AOS is larger than the EOS in order to include all signi�cant couplings among the

amplitudes.

While Eq. (6.11) give a visual picture (see Fig. 6.3 ), the optimal sizes of the fragment orbital

spaces are of course not known a priori. Instead they are optimized during the calculation to

ensure that the atomic fragment and pair fragment energies have converged to a prede�ned

energy threshold. In this way it is ensured that the fragment sizes are su�ciently large to ensure

that only truly small terms are neglected.

In Sec. 6.3 we discuss in more detail how the optimization of fragment spaces is carried out

in a DEC calculation. Before proceeding to this discussion we �rst look at the locality analysis

for CCSD.

The CCSD locality analysis is more cumbersome than the corresponding analysis for MP2,

but from a locality point of view, the CCSD amplitude equations contain three di�erent types

of terms discussed in Secs. IVB of Paper H. Type 1 and type 3 terms may relatively easy be

dealt with, whereas type 2 terms are more troublesome because fragment calculations neglect

some small long�range e�ects present in these terms. However, as discussed in Sec. IVB2 these

terms are very small, and the omission of these terms has a negligible e�ect on the total CCSD

energy.

Thus, the analysis substantiates from a theoretical point of view that the fragment calcula-

tions may be carried out in orbital spaces of �nite size, and that the AOS is the EOS augmented

by bu�er regions. For future discussions we introduce the notation BP and BP for the occupied

and unoccupied bu�er region, respectively (see Fig. 6.4)

The CCSD analysis therefore have the same conclusion as the MP2 analysis, that it is indeed

possible to carry out a full CCSD calculation in terms of small independent fragment calculations.
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Figure 6.4: Molecular fragment P . The correlated wave function calculation is carried out using

the amplitude orbital space FP (blue and red markings), while the atomic fragment energy EP is

evaluated using the e�ective occupied (dark blue) and unoccupied (dark red) space.

6.3 Optimization of Fragment Orbital Spaces

As described above an atomic fragment calculation for fragment P is carried out using the

atomic fragment (AOS) FP in Fig. 6.3, and the atomic fragment energy is calculated from the

amplitudes referencing the EOS (see �g. 6.2 and Eq. (6.9)).

We may now write up the algorithm to determine the optimal orbital space FP visualized

in Figure 6.5. In Fig. 6.5 A-D we have illustrated how the e�ective unoccupied space [P ] (dark

red) and the bu�er region BP (light blue) and BP (light red) may gradually be increased to

ensure that EP is determined to a given energy tolerance.

A. Initially a starting guess is made for the size of the molecular fragment.

• All atoms within an initial radius R[P ] from the atomic site P is included in the

e�ective unoccupied space [P ].

• All atoms outside R[P ] but inside the initial radius RBP
is included in the unoccupied

bu�er region BP.

• All atoms within an initial radius RBP
is included in the occupied bu�er region BP,

except the atom P .

The amplitudes are determined using the atomic fragment AOS FP, and EP is evaluated

using the atomic fragment EOS

B. The e�ective unoccupied space [P ] is then expanded using a constant step size, to increase

R[P ], and include atoms, which are spatially close to the current P . The energy EP is

evaluated using the expanded EOS, until EP remain unchanged

C. The occupied bu�er BP is expanded by increasing RBP
, the amplitude equations solved, and

the energy EP is evaluated until convergence
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D. The unoccupied bu�er BP is expanded by increasing RBP
, the amplitude equations solved,

and the energy EP is evaluated until convergence

The steps in B,C and D are repeated until the size of all spaces remain unchanged.

In Fig. 6.5 E we illustrate how the atomic�pair�fragment EOS and AOS for evaluating EPQ

is formed as the union of the atomic�fragment EOS and AOS for evaluating EP and EQ. The

locality analysis in paperH substantiate that it is not necessary to carry out additional fragment

size optimizations for the combined PQ space as the locality has been de�ned by the atomic

fragment calculations on P and Q. The numerical results presented in Sec. 6.7 also support

this.

The fragment optimization discussed above applies both to MP2 and CCSD fragment cal-

culations. In a CCSD calculation we may take advantage of the fact that the locality of the

CCSD amplitude equations is similar to the one for MP2 equations, except for a more extensive

coupling among the amplitudes. Therefore the MP2 fragment spaces serve as good starting

guesses for the optimal CCSD fragment spaces. We then systematically increase the size of the

CCSD fragments spaces until the CCSD atomic fragment energies are converged to within a

given threshold.

The optimization of fragment orbital spaces, is a time-limiting step, and this method can be

improved. Work in this direction is ongoing.

6.4 Computational Scaling in DEC Coupled Cluster Calculations

In Sec. 6.3 we demonstrate how the sizes of the orbital fragments that are used to evaluate both

the atomic fragment energies in Eq. (6.7) and the atomic�pair�fragment energies in Eq. (6.8),

may systematically be increased to ensure that the fragment energies are determined to a preset

threshold. Since the major task of a CC calculation is to describe short�ranged phenomena

in the wave function and dispersion e�ects, the fragment sizes are to a large extent system

independent. The number of atomic fragments scales as the number of atoms in the molecular

system and the calculation of atomic fragment energies therefore is linearly scaling.

The number of atomic�pair�fragment energies in Eq. (6.5) has a quadratic scaling with

system size but this scaling is reduced to linear for large systems because the pair fragment

calculations only need to be carried out for pair�atomic distances where the dispersion forces

are non�negligible. A conservative distance cuto� have thus been implemented.

The above scheme is straightforward parallizable. The evaluation of the atomic fragment

energies may �rst be done independently of each other; second the atomic pair fragment energies

that are needed may also be calculated independently of each other. Provided a su�cient

number of processors are available the "wall time" for a parallelized correlated wave function

calculation therefore is the sum of a single atomic fragment calculation and a single atomic pair

fragment energy calculation, not considering the time for the initial Hartree-Fock calculation

whose e�cient evaluation has been discussed previously and may be done using a linear-scaling
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Figure 6.5: Main steps in the linear-scaling DEC algorithm. Initially a starting guess is made for

the size of the molecular fragment for evaluating EP and EQ (A). The e�ective unoccupied space

is then determined (B) followed by an iterative optimization of the occupied and unoccupied bu�er

spaces (C and D). The steps in B, C and D are thus repeated until the sizes of all spaces remain

unchanged. In (E) it is illustrated that the union of P and Q fragments are used for calculating

EPQ.
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algorithm[88].

6.5 Details about the DEC Model

In this section we describe various details about the DEC model. In Sec. 6.5.1 we discuss how to

improve the locality of the MOs used in a DEC fragment calculation. The fragment calculations

are carried out as standard MP2 and CCSD calculations as we detail in Sec. 6.5.2. In Sec.

6.5.3 we discuss how the pair interaction energy ∆EPQ may be calculated without introducing

counterpoise-like errors.

6.5.1 De�ning locality of molecular orbitals and atomic fragment extents

For a local occupied HF orbital φP
i =

∑
µ χµc

P
µi associated with atomic site P , we may introduce

an approximation φ̃P
i =

∑
µ̃ χµ̃c̃

P
µ̃i by restricting µ̃ to be a subset of the full set of atomic basis

functions, and thereby remove the tail region of the occupied MOs. The expansion coe�cients

of φ̃P
i may be determined from a least-squares �t

f(c̃P ) = 〈φ̃P
i − φP

i |φ̃
P
i − φP

i 〉 (6.12)

giving

c̃Pµ̃i =
∑

ν̃η

(S−1)µ̃ν̃Sν̃ηc
P
ηi. (6.13)

To identify the extent of φP
i , the nonvanishing Mulliken charges are determined for φP

i and

arranged in order of decreasing size to prioritize the importance of the atomic sites. We may

then restrict µ̃ to be the AOs centered on the atomic sites which have a Mulliken charge larger

than a given threshold, and for this threshold determine the expansion coe�cients c̃Pµ̃i from

Eq. (6.13). Using 1 − 〈φ̃P
i |φ̃

P
i 〉 as a measure of the quality of the least-squares �t, we now

determine the largest Mulliken charge for which

1 − 〈φ̃P
r |φ̃

P
r 〉 ≤ δ (6.14)

where δ is a pre�xed small positive number. The atomic sites de�ned by the Mulliken charge

threshold determine the extent of orbital φP
i denoted {φP

i }. The union of extents for the HF

orbitals assigned to atomic site P determine the atomic extent {P}. This case is depicted in

Fig. 6.6 for a one�dimensional system.

We note that a screening of atomic centers in accordance with Eq. (6.14), was used by

Boughton and Pulay [85] for the occupied HF orbitals as a completeness criteria for the assign-

ment of excitation spaces for the occupied HF orbitals.

When solving the amplitude equations for the atomic fragment calculation we use the MOs

of the AOS FP. The MOs may have expansion coe�cients on atomic sites outside the FP space.

The atomic sites, where atomic integrals have to be evaluated to ensure that the MO integrals

in FP are properly evaluated, consist of the union of atomic extents for all atoms in FP. We
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Figure 6.6: One-dimensional illustration of the atomic extent for atomic site P . Light green

squares denote atomic sites where the molecular expansion coe�cients are non�vanishing, the orbital

extent {φP

i
}. The total atomic extent {P} is the union of atomic sites for the individual occupied

orbitals. In this example four orbitals have been assigned to P illustrated by the dark green color.

denote this space the atomic�fragment�extent {FP}. If for example we consider the case where

FP contains the atomic sites L, M , N , P , Q, and R, then

{FP} = {L} ∪ {M} ∪ {N} ∪ {P} ∪ {Q} ∪ {R} (6.15)

This case is depicted in Fig. 6.7 for a one�dimensional system.

We have now de�ned the AOS FP, where the amplitude calculation is carried out, and the

atomic centers in terms of which the MOs are expanded, {FP}. The MOs that are used in an

atomic�fragment calculation are then obtained from an expansion of the form,

φ̃X
r =

∑

µ̃∈{FP}

χµ̃c̃
X
µ̃r; (X ∈ FP) (6.16)

The expansion coe�cients in Eq. (6.16) may be determined from Eq. (6.13) and gives the best

uniform description of the MOs in FP con�ned to the space {FP}.

We further require that the orbitals are normalized

〈φ̃X
r |φ̃X

r 〉 =
∑

µ̃ν̃

c̃Xµ̃rSµ̃ν̃ c̃
X
ν̃r = 1 (6.17)

Using Eq. (6.17) the orbitals are nolonger orthonormal, and the MP2 amplitude equations must

be solved in an iterative fashion.

The quality of the least�squares �t, which determine the MOs, depends on the parameter

δ in Eq. (6.14), as δ was used to determine {FP}. Tightening the threshold δ will lead to an

extension of {FP} and thus a better least-squares �t.

We have now established the locality of an atomic�fragment calculation in terms of the spaces

FP and {FP} and identi�ed the MOs that should be used in the amplitude calculations.

34



6.5 Details about the DEC Model

N

Q

P

{M}

{N}

{P}

{FP }

M

L

P Q{Q}

{R} R

{L} ...

...

...

...

...

...

...

Figure 6.7: One-dimensional illustration of the atomic fragment extent {FP} where the molecular

orbitals in the atomic orbital space FP are expanded. {FP} is the union of atomic extents for the

atomic sites in FP. In this example FP contains six atoms L, M , N , P , Q, and R. For simplicity

we do not consider occupied and virtual spaces separately. Light green squares denote atomic sites

where the molecular expansion coe�cients are non�vanishing, the orbital extent {φP

i
}, and dark

green denote the atomic site where the molecular orbitals are assigned.
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For clarity let us now summarize the main steps for fragment P :

• Choose a δ value which is a measure of how much the approximated orbitals φ̃i deviate

from the original orbitals φi.

• For each atom L in the atomic orbital space FP construct the atomic extent {L} by

� For each approximated orbital assigned to atom L add atoms based on decreasing

Mulliken charge until Eq. (6.14) is satis�ed. This newly generated list of atoms

constitute the orbital extent {φ} for each orbital.

� construct the atomic extent {L} as the union of orbital extents for all orbitals assigned

to atom L. (Fig. 6.6).

• Construct the atomic fragment extent {FP} as the union of atomic extents for all atoms

in the fragment (Fig. 6.7).

• Determine the local MOs using Eq. (6.16), where the MO coe�cients are determined from

Eq. (6.13). Subsequently the MOs may be normalized according to Eq. (6.17)

6.5.2 Coupled Cluster Calculations on Atomic Fragments and Atomic Pair

Fragments

The MP2 and CCSD atomic�fragment and atomic�pair�fragment calculations are carried out as

standard MP2 and CCSD calculations using the local HF orbitals and the atomic�fragment or

atomic�pair�fragment orbital spaces. The MP2 amplitude equations constitute a set of linear

equations involving a symmetric matrix and are solved using the conjugate residual with optimal

trial vectors (CROP) algorithm where only the last three trial vectors need to be stored to

maintain the information of all previous trial vectors (see Ref. [89]). For CCSD a non�linear

set of amplitude equations are solved. For CCSD we also use the conjugate residual method in

the CROP implementation. For the small non�linearity in the CCSD equations, storing the last

three trial vectors is also su�cient to maintain the information content of all the previous trial

vectors. In our actual CCSD calculations we store 3�5 trial vectors.

6.5.3 Avoiding Counterpoise-like Errors in Pair Energy Calculations

The calculation of pair energies requires special attention because the equations presented in

Sec. 6.1 may be subject to counterpoise-like errors. We now demonstrate how this problem may

easily be circumvented.

The expression for the atomic pair�fragment interaction energy in Eq. (6.5), ∆EPQ = EPQ−

EP−EQ, is correct as it stands. However, the amplitudes used for calculating EP, EQ, and EPQ

are obtained from fragment calculations in di�erent AOSs, i.e. FP, FQ, and FPQ = FP ∪ FQ.

The orbital space employed for the PQ atomic�pair�fragment calculations is thus larger than

the orbital spaces used for the P and Q atomic�fragment calculations. This means that the
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Figure 6.8: Molecular fragment P . The correlated wave function calculation is carried out using

the amplitude orbital space FP (blue and red markings), while the atomic fragment energy EP is

evaluated using the e�ective occupied (dark blue) and unoccupied (dark red) space. The orbitals

in the molecular fragment P are con�ned to the atoms in the atomic fragment extent {FP}. Thus,

two-electron integrals in the AO basis need to be calculated for atoms in the {FP} space.

amplitudes used to determine EPQ are determined slightly more accurately than the amplitudes

used to determine EP and EQ, and therefore counterpoise-like errors will be introduced when

calculating the interaction energy ∆EPQ = EPQ − EP − EQ.

To avoid such counterpoise problems we may use Eqs. (6.7) and (6.8) to express ∆EPQ as,

∆EPQ = EPQ − EP − EQ

=
∑

ij∈P∪Q

ab∈[P ]∪[Q]

(
tab
ij + tai t

b
j

)
(2giajb − gibja)

−
∑

ij∈P

ab∈[P ]

(
tab
ij + tai t

b
j

)
(2giajb − gibja)

−
∑

ij∈Q

ab∈[Q]

(
tab
ij + tai t

b
j

)
(2giajb − gibja) (6.18)

and evaluate ∆EPQ in Eq. (6.18) using only amplitudes from the pair�fragment calculation. We

thereby determine ∆EPQ in line with a counterpoise�corrected interaction energy.

6.6 Overview of the Spaces Employed in a DEC Calculation

It is now in place to summarize the various spaces employed in the atomic�fragment and atomic�

pair�fragment calculations.

In Fig. 6.8 we summarize the various spaces used in an atomic fragment calculation. The

amplitude equation is solved for MO indices assigned to atoms in the AOS FP, and the fragment�

energy EP is calculated using only the EOS, see Eq. (6.7). The spaces in FP are optimized during
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the calculation as we discussed in Sec. 6.3. The MOs in atomic fragment P have non�vanishing

expansion coe�cients only for the atomic sites in the {FP} space. Thus, when solving the

amplitude equations in the FP space, we need two-electron integrals in the AO basis for atomic

sites in the {FP} space to properly describe the MO integrals which are used in the amplitude

equation.

For the atomic pair fragment calculations we employ the union of spaces from the atomic

fragment calculations. As an example consider the PQ pair. The amplitude equations are solved

using the FP ∪FQ space, and the atomic pair fragment interaction energy ∆EPQ is determined

as described in Sec. 6.5.3. The MOs are described in terms of atoms in the {FP} ∪ {FQ} space

and two-electron integrals are therefore calculated for the {FP} ∪ {FQ} space.

6.7 Illustrative Results

In this section we present calculations demonstrating that MP2 and CCSD correlation energies

for a full molecular system may be determined from DEC fragment calculations with full control

of the errors introduced.

The initial results indicate that the maximum atomic fragment size is independent of the size

of the molecule. This is closely related to the fact that the maximum orbital spread obtained

using the least-change molecular basis (see Ref. [56] for a discussion of orbital spreads) is roughly

independent of the size of the molecule. We are therefore able to carry out MP2 calculations on

all atomic fragments and atomic pair fragments encountered � irrespectively of the size of the

molecule. This implies that the size of the largest molecule that we can treat in a DEC-MP2

calculation is limited only by the initial Hartree�Fock calculation.)

Using the linear C14H2 molecule as a test system we now compare DEC�MP2/cc-pVDZ

calculations to full molecular MP2/cc-pVDZ calculations. In subsection 6.7.1 we discuss the

errors in the total energies as a function of the fragment optimization threshold (FOT). We then

analyze the errors of the individual atomic fragment and atomic pair interaction energies in Sec.

6.7.2.

6.7.1 Total Energy Errors

Let us consider the single and pair contributions to the total energy errors. In Table 6.7.1 we have

listed the sums of the single atomic fragment and atomic pair interaction energy errors compared

to a full space calculation for δ = 0.01. We henceforth denote
∑

PEP as the total single energy

and
∑

P>Q ∆EPQ as the total pair interaction energy. In Table 6.1 it is seen that the total

single energy and total pair interaction energy errors systematically decrease when tightening

the fragment optimization threshold (FOT). Furthermore, total single and total pair interaction

energy errors are of similar magnitude, substantiating that pair fragments may be determined as

unions of atomic fragments without carrying out additional fragment optimizations as discussed

in Sec. 6.3.
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Threshold ∆(
∑

PEP) ∆(
∑

P>Q ∆EPQ) ∆Ecorr % of Ecorr

10−3 0.006793 0.008313 0.015106 99.1313

10−4 0.000422 0.000250 0.000672 99.9614

10−5 0.000136 0.000148 0.000284 99.9837

10−6 0.000012 0.000011 0.000022 99.9987

10−7 0.000002 0.000001 0.000004 99.9998

Table 6.1: Energy errors [a.u.] for single, pair, and total correlation energies using various fragment

optimization thresholds compared to a full molecular calculation. The calculations have been carried

out on the C14H2 molecule at the MP2 level of theory using a cc-pVDZ basis and δ = 0.01.

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-7

10
-6

10
-5

10
-4

10
-3

M
a
x
 
E
P
 
e
r
r
o
r
 
[
a
.
u
]

FOT [a.u. ]

Figure 6.9: Maximum errors of atomic fragment energies ∆EP as a function of the fragment

threshold (FOT). The calculations have been carried out on the C14H2 molecule at the MP2 level

of theory using a cc-pVDZ basis and δ = 0.01.

6.7.2 Individual Fragment Energy Errors

Having analyzed the total errors we now consider the errors in the individual atomic fragment

and atomic pair interaction energies.

In Fig. 6.9 we have plotted the maximum errors in the individual atomic fragment energies

EP. It is seen that the maximum atomic fragment energy error decreases uniformly when

tightening the threshold. We do note that for the lowest FOTs (10−6 and 10−7) the maximum

atomic fragment energy errors are slightly larger than the FOTs. This is an artifact of the

simple fragment optimization procedure in Fig. 6.5 where we only allow one single orbital space

to expand in each step. We are currently working on solving this problem.

In Fig. 6.10 we have plotted the absolute pair interaction energies obtained in a full DEC

calculation (red-solid curve) as a function of the pair distance along with the maximum absolute
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Figure 6.10: Maximum atomic pair interaction energies Max∆EPQ and maximum errors of atomic

pair interaction energies ∆EPQ as a function of the distance between pairs RPQ for various atomic

fragment optimization thresholds. Red solid curve: Maximum atomic pair interaction energies

from full space DEC calculation. Other curves: Maximum errors in atomic pair interaction

energies for the fragment optimization thresholds indicated in the �gure. The calculations have

been carried out on the C14H2 molecule at the MP2 level of theory using a cc-pVDZ basis and

δ = 0.01.

pair interaction energy errors for various fragment calculations. From the red-solid curve we see

that the pair interaction energies decrease rapidly as a function of distance. This supports the

discussion in Sec. 6.4, where it was stated that the pair fragment calculations do not need to be

carried out for large pair distances where dispersion forces are negligible. In Fig. 6.10 we also see

that in general the maximum pair interaction energy error systematically decreases by tightening

the threshold. We note that for the molecule under consideration the errors for FOT = 10−4

is coincidentally lower than expected. Finally, the maximum pair interaction energy errors in

Fig. 6.10 are comparable in magnitude to the maximum atomic fragment energy errors in Fig.

6.9. This is in line with the conclusion that pair fragments may be formed simply as unions of

atomic fragments.

6.8 Conclusion and Comparison with Reduced Scaling Coupled

Cluster Methods

We have presented an algorithm for a linear scaling CC calculations, which ful�lls all require-

ments of a linear scaling CC model presented in section 5.1

Calculations in the presented algorithm are made on a linear scaling number of atomic

fragments and pairs of atomic fragments. The main e�ort is shifted towards optimization of

atomic fragments for selection of optimal excitation and correlation spaces. The optimization
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is necessary to recover the full correlation energy, and ensure a continuous potential energy

surface. The scaling for the atomic and atomic pair fragments is similar to the standard CC

model, but the calculations for each fragment may be done independently and the model is

therefore straightforward parallizable.

The presented algorithm is general and may be applied to the full hierarchy of CC methods,

including the perturbative methods like MP2 and CCSD(T). The algorithm provides both the CC

correlation energy, the wave function in terms of the CC amplitudes, and molecular properties

may be evaluated using this method. An implementation of the MP2 and CCSD molecular

gradient is in progress.

The DEC algorithm requires no ad-hoc parameters and maintains the black-box property of

the CC hierarchy.

The DEC algorithm, relies on a local occupied and unoccupied HF orbital basis. This basis

is a non-redundant basis set, but at the moment the Least-Change algorithm [56] have a high

scaling (O(N5)), which is a bottleneck of the current implementation.

None of the local CC methods of section 5.1, ful�ll all requirements of a linear scaling CC

algorithm, in contrast to DEC. However, the most distinguishing feature of DEC is probably

the optimization of atomic fragments for selection of optimal excitation and correlation space,

which is lacking in the local CC methods of section 5.1. The �xed excitation space prohibit the

local CC methods from recover the full CC correlation energy, and the important error control

is lost in favour of speed and linear scaling.
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Chapter 7

Response Theory

7.1 Introduction

In the previous chapters, the focus has been on obtaining e�cient linear�scaling methods for

solving the time-independent Schrödinger equation. The resulting wave function can be used

to calculate simple expectation values such as the permanent dipole moment. However, once a

molecular system is subjected to an external perturbation like for instance a time�dependent

electric �eld, the solution to the time-independent Schrödinger equation is no longer valid and we

must solve the time�dependent Schrödinger equation. Assuming that the external perturbation

is small, we can expect the unperturbed and perturbed wave functions to be very similar, and we

may use the original unperturbed time-independent solution as a starting point, for obtaining

the time-dependent solutions. This approach is called response theory but is actually just time-

dependent perturbation theory in the frequency domain, applied to molecular systems within an

approximate quantum chemistry wave function model. The goal of standard response theory is

to obtain the perturbed property (e.g. the induced dipole moment), and not the wave function

itself nor the actual time�development of the system. Response theory therefore describes how

an observable responds when a molecular system is subjected to an external �eld.

7.2 Exact Response Theory

Imagine a system described by a wave function |0〉, which ful�lls the time�independent Schrödinger

equation H0|0〉 = E0|0〉. Now imagine that the system is perturbed by a �rst-order time-

dependent perturbation V̂ (t)

V̂ (t) =

∫ ∞

−∞
V (ω)e−iωt+ǫtdω =

∫ ∞

−∞
V̂ ωe−iωt+ǫtdω (7.1)

where ǫ is a positive in�nitely small number such that the perturbation vanishes at t = −∞.

For t > −∞, the �elds are gradually applied, until t = 0. This gradual change in the external

conditions characterizes an adiabatic process and ensures that the system remains in the initially

populated state at all times. In response to the perturbation, the wave function changes (|0〉 →

|0̃〉) and so do the molecular properties.
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As mentioned, response theory describes how the expectation value 〈0|Â|0〉 of an operator

Â is a�ected by the time-dependent perturbation. An exponential parametrization is used to

describe the perturbed time-dependent wave function |0̃〉 [90],

|0̃〉 = eiX̂(t)|0〉 (7.2)

where X̂(t) is a Hermitian operator describing how the molecular system changes due to the

perturbation (see Ref. [90] ).

X̂(t) =
∑

p<0

xp(t)R̂p +
∑

p>0

xp(t)R̂p (7.3)

Since X̂(t) is a Hermitian operator, the time-dependent response parameters for positive and

negative indices are related as

R̂p =




|p〉〈0|, p > 0

|0〉〈p|, p < 0
xp(t) =




xp(t), p > 0

x∗−p(t), p < 0
(7.4)

where |p〉 denotes an excited state p which ful�lls the time�independent Schrödinger equation

H0|p〉 = Ep|p〉 (7.5)

and which is orthogonal to all other excited states

〈p|n〉 = δpn (7.6)

7.2.1 The Time Evolution of an Expectation Value

The Hermitian operator X̂(t) may be expanded in orders of the external perturbation

X̂(t) = X̂(1)(t) + X̂(2)(t) + · · · (7.7)

To second order in the external perturbation, we obtain the expansion

〈0̃|Â|0̃〉 = 〈0|Â|0〉 − i〈0|[X̂(1)(t), Â]|0〉

− 1
2〈0|[X̂

(1)(t), [X̂(1)(t), Â]]|0〉 − i〈0|[X̂(2)(t), Â]|0〉. (7.8)

The �rst term is the expectation value in absence of a perturbation. The second term determines

the �rst order correction due to the applied �eld, while the remaining terms represent second

order corrections.

Since the external perturbation is usually a homogenous periodic electric or magnetic �eld

de�ned by a single frequency component, it is convenient to operate in the frequency domain

rather than the time domain. The wave-function corrections are therefore introduced in the

frequency domain. By analogy to Eq. (7.1)

X̂(1)(t) =

∫ ∞

−∞
X̂(1)(ω)e−iωt+ǫtdω (7.9a)

X̂(2)(t) =

∫ ∫ ∞

−∞
X̂(2)(ω1, ω2)e

−i(ω1+ω2)t+2ǫtdω1dω2 (7.9b)

44



7.2 Exact Response Theory

where we require the second-order corrections to be symmetric in the frequencies: X̂(2)(ω1, ω2) =

X̂(2)(ω2, ω1). Inserting the frequency expansions of the wave-function corrections of Eq. (7.9)

into Eq. (7.8), we obtain

〈0̃|Â|0̃〉 = 〈0|Â|0〉 − i

∫ ∞

−∞
〈0|[X̂(1)(ω), Â]|0〉e−iωt+ǫtdω

−
1

2

∫ ∫ ∞

−∞
〈0|[X̂(1)(ω1), [X̂

(1)(ω2), Â]]|0〉e−i(ω1+ω2)t+2ǫtdω1dω2

−
1

2

∫ ∫ ∞

−∞
〈0|[X̂(1)(ω2), [X̂

(1)(ω1), Â]]|0〉e−i(ω1+ω2)t+2ǫtdω1dω2

− i

∫ ∫ ∞

−∞
〈0|[X̂(2)(ω1, ω2), Â]|0〉e−i(ω1+ω2)t+2ǫtdω1dω2

(7.10)

We now Introduce the linear and quadratic response functions.

〈〈A;V ω〉〉ω = −i〈0|[X̂(1)(ω), Â]|0〉 (7.11a)

〈〈A;V ω1 , V ω2〉〉ω1,ω2 = −
1

2
〈0|[X̂(1)(ω1), [X̂

(1)(ω2), Â]]|0〉

−
1

2
〈0|[X̂(1)(ω2), [X̂

(1)(ω1), Â]]|0〉 − 2i〈0|[X̂(2)(ω1, ω2), Â]|0〉 (7.11b)

Eq. (7.10) may then be written as

〈0̃|Â|0̃〉 = 〈0|Â|0〉 +

∫ ∞

−∞
〈〈A;V ω〉〉ωe

−iωt+ǫtdω

+
1

2

∫ ∫ ∞

−∞
〈〈A;V ω1 , V ω2〉〉ω1,ω2e

−i(ω1+ω2)t+2ǫtdω1dω2

(7.12)

With the de�nitions of Eq. (7.11a) and Eq. (7.11b), the linear response function represents

the �rst-order correction to the expectation value due to the applied �eld, while the quadratic

response function represents the second-order correction.

7.2.2 Time Evolution according to Ehrenfest's Theorem

Once the response parameters xp(t) of Eq. (7.4) are determined, it is possible to determine the

response functions. The main task of response theory is therefore to determine the response

parameters xp(t). The time evolution of |0̃〉 in the presence of the time-dependent perturbation

may be determined using Ehrenfest's theorem [91] Using the operator of Eq. (7.4).

i
d

dt
〈0̃|R̂p|0̃〉 = i〈0̃|(

∂R̂p

∂t
|0̃〉 + 〈0̃|[R̂p, Ĥ0 + V̂ (t)]|0̃〉 (7.13)

Since R̂p is time-independent, Eq. (7.13) reduces to

i
d

dt
〈0̃|R̂p|0̃〉 = 〈0̃|[R̂p, Ĥ0 + V̂ (t)]|0̃〉 (7.14)

Using the Ehrenfest theorem results in a set of nonlinear equations which de�ne the time-

dependence of X̂(t). These equations are solved order by order to determine the parameters

X̂(i)(ω). Inserting Eqs. (7.2) and (7.7) into Eq. (7.14), expanding in orders of the external
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perturbation, and collecting the terms linear in the perturbation, the �rst-order time-dependent

equations are obtained

〈0|[X(1), [R̂p, Ĥ0]]|0〉 + i〈0|[R̂p, V̂ (t)]|0〉 − i〈0|[Ẋ(1), R̂p]|0〉 = 0 (7.15)

To solve this time-dependent equation, the frequency expansions of the wave function corrections

of Eq. (7.9) and of the external perturbations Eq. (7.1) are used.

∫ ∞

−∞

(
〈0|[X(1)(ω), [R̂p, Ĥ0]]|0〉 + i〈0|[R̂p, V̂

ω]|0〉 − ω〈0|[X(1)(ω), R̂p]|0〉
)
e−iωt+ǫtdω = 0 (7.16)

Extracting the integrand, which must also be zero and rearranging using (7.3) we obtain

∑

q 6=0

(
〈0|[[R̂p, Ĥ0], R̂q]|0〉 − ω〈0|[R̂p, R̂q]|0〉

)
xq = −i〈0|[V̂ ω, R̂p]|0〉. (7.17)

The perturbation V̂ ω is usually called B in order to clearly distinguish between the di�erent

perturbing components of the external potential. De�ning the generalized Hessian and metric

matrices E[2] and S[2], and the gradient vector gb by

E[2]
pq = 〈0|[[R̂p, Ĥ0], R̂q]|0〉 (7.18)

S[2]
pq = 〈0|[R̂p, R̂q]|0〉 (7.19)

gb
p = 〈0|[R̂p, B̂]|0〉 (7.20)

the �rst-order response equation may be written as

(E[2] − ωbS
[2])xb = igb (7.21)

Inserting the explicit expression for Rp in Eq. (7.4) into Eqs. (7.18) and (7.19), and using Eqs.

(7.5) and (7.6), E[2] and S[2] may be written in the diagonal forms,

E[2] =

(
ωk 0

0 ω∗
k

)
S[2] =

(
1 0

0 −1

)
(7.22)

where ωk is a diagonal matrix containing the excitation energies. For reasons which will become

evident in section 7.3, we have retained the complex conjugation in the lower right block of E[2],

but in standard response theory, the excitation energies are real (ω∗
k = ωk). Using the diagonal

structure of the matrices in Eq. (7.22), we may write the �rst-order standard response equation

in Eq. (7.21) as (
1xb

2xb

)
= i

(
(ωk − ωb)

−1 0

0 (ω∗
k + ωb)

−1

)(
1gb

2gb

)
(7.23)

where ωb is a diagonal matrix with the frequency ωb in all diagonal elements. We have divided xb

and gb into two sub-vectors to emphasize that the upper and the lower part of xb are decoupled

due to the diagonal structure of E[2] and S[2]. Note that 1xb and 2xb refer to positive and
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negative indices, respectively, contrary to the right-hand side vector where 1gb and 2gb refer to

negative and positive indices, respectively,

(
1xb

k

2xb
−k

)
= i

(
(ωk − ωb)

−1 0

0 (ω∗
k + ωb)

−1

)(
Bk0

−B0k

)
(7.24)

where we have used Eq. (7.20) and introduced the short-hand notation,

Bk0 = 〈k|B̂|0〉; B0k = 〈0|B̂|k〉 (7.25)

Inserting Eq. (7.24) into Eq. (7.11a), we obtain a sum-over-states (SOS) expression for the linear

response function

〈〈A;B〉〉ω =
∑

p6=0

(
−
A0pBp0

ωp − ωb
−
V 0pAp0

ω∗
p + ωb

)
=
∑

p6=0

(
A0pBp0

ωb − ωp
+
V 0pAp0

ωb + ω∗
p

)
(7.26)

The linear response function determine the �rst order correction to the expectation value, and

the residue of the linear response function give information about the dipole transition matrix

element between the reference state |0〉 and excited state |n〉

lim
ωb→ωn

(ωb − ωn)〈〈A;B〉〉ω = A0nBn0, (7.27)

from which the oscillator strength may be determined.

Likewise, the quadratic response equation determining the second order wave function-

corrections may be determined from (7.14) by collecting terms which are second-order in the

external perturbation, and the same may be done for higher order response equations.

For future discussions, we note that the quadratic response function may be shown to be

〈〈A;B,C〉〉ωb,ωc =
∑

p6=0

∑

q 6=0

B0pÃpqCq0

(ωp + ωb)(ωq − ωc)
+

C0qÃqpBp0

(ωp − ωb)(ωq + ωc)

+
∑

p6=0

∑

q 6=0

A0pB̃pqCq0

(ωp + ωa)(ωq − ωc)
+

C0qB̃qpAp0

(ωp − ωa)(ωq + ωc)

+
∑

p6=0

∑

q 6=0

A0pC̃pqBq0

(ωp + ωa)(ωq − ωb)
+

B0qC̃qpAp0

(ωp − ωa)(ωq + ωb)
, (7.28)

and that in paper D it is shown that all response equations have the same form

(E[2] − ωb...fS[2])xb...f = igb...f (7.29)

here shown for the f 'th order response equation, where the right-hand side vector gb...f only

contains response parameters of orders f − 1 and below.

7.3 Damped Response Theory

The response functions derived in Section 7.2 have singularities when one or more of the optical

frequencies coincides with an excitation energy (ωb = ωp)(see (7.26)). This leads to an unphys-

ical behavior for molecular properties in the resonance region, such as divergence of dispersion
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curves and absorption spectra with in�nitely narrow absorption peaks, i.e. stick spectra. This

unphysical behavior is due to the fact that the excited states have in�nite lifetimes when the

standard response functions are derived in Section 7.2.

7.3.1 Phenomenological Damping of Excited States

Consider a molecular system described by the Hamiltonian H0, characterized by Eqs. (7.5)

and (7.6). The time-dependent excited state |n(t)〉, which is obtained by multiplying |n〉 by an

exponential phase factor,

|n(t)〉 = e−iEnt|n〉 (7.30)

trivially satis�es the time-dependent Schrödinger equation,

i
∂|n(t)〉

∂t
= H0|n(t)〉 = En|n(t)〉 (7.31)

The norm of |n(t)〉 is constant in time, 〈n(t)|n(t)〉 = 〈n|n〉 = 1, so no decay occurs from the

excited state to the ground state (or other excited states). In other words, the lifetime of the

excited state |n(t)〉 is in�nite.

In reality, an excited state has a �nite lifetime which is not readily described by the Hamil-

tonian H0. However, we may introduce a phenomenological description of the lifetime by multi-

plying Eq. (7.30) by an exponential damping factor e−
1
2
Γnt to obtain the damped excited state

|n̄(t)〉 [92, 93]

|n̄(t)〉 = e−
1
2
Γnt|n(t)〉 = e−i(En−

i
2
Γn)t|n〉 (7.32)

The norm of the damped excited state |n̄(t)〉 decays exponentially in time

〈n̄(t)|n̄(t)〉 = e−Γnt (7.33)

and Γ−1
n may therefore be interpreted as the lifetime of the excited state |n̄(t)〉, i.e. the time it

takes before the population of the excited state has decreased by a factor of e−1.

The non-damped state |n(t)〉 in Eq. (7.31) has a real energy En. By contrast, the damped

excited state |n̄(t)〉 does not possess a well-de�ned real energy due to its �nite lifetime,

i
∂|n̄(t)〉

∂t
= (En − i

2Γn)|n̄(t)〉 (7.34)

By comparing Eqs. (7.30) and (7.32) we see that the damping of the excited states is e�ectively

obtained by introducing complex excitation energies Ēn

En → Ēn = En − iγn; γn = 1
2Γn (7.35)

for all excited states |n(t)〉.

In standard response theory of Section 7.2, transitions between the ground and excited

states are described in terms of oscillator strengths which are obtained from residues of response

functions. This gives rise to a delta-peaked residue spectrum (absorption spectrum). In an ex-

perimental absorption spectrum, the peaks are broadened and the oscillator strength is obtained
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by integration over the absorption band representing the electronic transition. The broadening

of the electronic absorption bands may be associated with contributions arising from di�erent

physical phenomena:

• The isolated, non-moving molecule possesses a �nite lifetime due to spontaneous emission

which gives rise to an energy uncertainty manifested in a broadening of the absorption

bands.

• The vibrational substructure of electronic absorption spectra leads to a broadening of the

absorption bands.

• In an experiment, the molecules are moving relative to the detector which leads to Doppler

broadening.

• Collisions among molecules perturb the electron densities and hence the excited state

energies, leading to a broadening of the absorption bands.

For a rigorous treatment of molecular properties which reproduces the correct physical be-

havior at resonance frequencies, the �nite lifetime of an excited molecular system has to be taken

into account, and the Hamiltonian H0 must be modi�ed accordingly.

This is not readily done using a standard quantum chemical description, and �nite lifetimes

have therefore been introduced using a phenomenological description. An e�ective lifetime is

introduced to account for the above physical phenomena [92�96] by multiplying the excited

states by a damping factor [92, 93].

In practice it is virtually impossible, to assign individual lifetimes to each excited state

encompassing all the above phenomena, and therefore the same common empirical e�ective

lifetime parameter Γ−1 = (2γ)−1 has previously been used for all excited states [94, 96]. In that

case Eq. (7.35) simpli�es to

En → Ēn = En − iγ. (7.36)

In response theory, the excited state energy En always enters in combination with the ground

state energy E0 as the excitation energy ωn = En − E0, and Eq. (7.36) then corresponds to

making the replacement,

ωn → ω̄n = ωn − iγ. (7.37)

since the lifetime of the ground state is in�nite and consequently Γ0 = 0. The introduction of

�nite lifetimes is therefore equivalent to introducing complex excitation energies.

When complex excitation energies are introduced and the domain of the response functions

thereby is extended to the complex plane, the singularities of the response functions at resonance

frequencies are removed. For real perturbation operators, dispersion processes are then described

by the real part of the response functions, whereas absorption spectra (residues of standard

response functions) are obtained from the imaginary part of the response functions. When real

excitation energies have been replaced by complex excitation energies, the result is called damped

response theory.
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Molecular absorption properties in damped response theory will have an imposed Lorentzian

lineshape function. The lineshape function associated with pure Doppler broadening is Gaussian,

whereas the lineshape function describing pure collision broadening is Lorentzian (see e.g. Ref.

[97]). The true experimental lineshape function is more complicated, as it encompasses all the

phenomena discussed above, but the structure of an absorption spectrum obtained using damped

response theory will be qualitatively correct.

Excitation energies and transition strengths are in standard response theory determined by

solving a generalized eigenvalue problem (See Eqs. (7.21) and (7.29)). Using this approach,

the lowest excitations may easily be addressed, and for small molecules this is in most cases

su�cient to obtain the desired absorption spectrum. However, for large molecules where the

density of low lying excited states may be very high, it may in practice be di�cult to determine

an absorption spectrum using standard response theory.

Damped response theory may be used to determine absorption spectra for any frequency

range. Damped response theory therefore becomes a very useful tool for calculating molecular

absorption spectra at arbitrary frequencies, also for large molecules.

The absorption spectra determined using damped response theory are identical to those

obtained using standard response theory, when Lorentzian lineshape functions are superimposed

onto the stick spectra of standard response theory. For this reason, we consider damped response

theory to be an empirical tool for determining absorption spectra in arbitrary frequency regions,

where standard response theory is not applicable in practice. This relates not only to simple

one-photon absorption spectra, but also to e.g. Magnetic Circular Dichroism spectra, discussed

in chapter 9 and other absorption properties, which may be determined from residues of standard

response functions.

Throughout this chapter, a bar denotes a quantity in damped response theory, whereas the

bar is omitted for the corresponding quantity in standard (non-damped) response theory.

We now show that to any order in the perturbation, the replacement in Eq. (7.37) may

e�ectively be carried out by solving a set of damped response equations for complex frequencies.

7.3.2 Application of Damped Response Theory

We now consider the application of damped response function theory. We start out by identifying

excitation energies in the standard response function expressions. Let us �rst consider the

response parameters, which are obtained by solving response equations of the form in Eq. (7.21).

All response parameters contain excitation energies due to the form of E[2] in Eq. (7.22). In

damped response theory, we thus have to carry out the replacement in Eq. (7.37) in E[2] to

obtain the damped generalized Hessian Ē[2],

E[2] → Ē[2] =

(
ω̄k 0

0 ω̄⋆
k

)
=

(
ωk − iγ 0

0 ωk + iγ

)
= E[2] − iγS[2] (7.38)

where we have used Eq. (7.22), and where γ is a diagonal matrix containing the damping

parameters.
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Since all response equations have the same form (see Eq. (7.29)), all singularities may be

removed by replacing (E[2]−ωb...fS
[2]) in the f 'th order response equation in Eq. (7.29) according

to Eq. (7.38),

E[2] − ωb...fS
[2] → E[2] − (ωb...f + iγ)S[2] (7.39)

In the following, we consider the structure of the damped response equations in detail.

7.3.3 Analysis of Damped Response Equations

Let us �rst consider the �rst-order damped response equation, which is obtained by carrying

out the replacement in Eq. (7.39) in the standard �rst order equation in Eq. (7.21),

[
E[2] − (ωb + iγ)S[2]

]
x̄b = igb (7.40)

or written out explicitly,

(
1x̄b

2x̄b

)
= i

(
(ωk − ωb − iγ)−1 0

0 (ωk + ωb + iγ)−1

)(
1gb

2gb

)
(7.41)

where x̄b is a complex damped response vector,

x̄b = x̄b
R + ix̄b

I (7.42)

The �rst�order right�hand�side vector gb is not barred because it is identical to the right�hand�

side vector in the standard theory of Eq. (7.20) since it does not depend on the excitation

energies. The damped response vector x̄b is complex in contrast to standard theory, where

(for real wave functions) the response vector xb is either purely real (e.g. when the perturbing

operator B is an electric dipole operator) or purely imaginary (e.g. when B is a magnetic dipole

operator).

The elements of the [E[2] − (ωb + iγ)S[2]]−1 matrix may be written in terms of their real and

imaginary parts

[E[2] − (ωb + iγ)S[2]]−1 =




ωk−ωb

(ωk−ωb)2+γ2 0

0 ωk+ωb

(ωk+ωb)2+γ2


+ i




γ
(ωk−ωb)2+γ2 0

0 − γ
(ωk+ωb)2+γ2




(7.43)

and similarly for the right-hand side vector gb = gb
R + igb

I . We now introduce the dispersion D

and the absorption A lineshape functions as,

Dk(ω) =
ωk − ω

(ωk − ω)2 + γ2
; Dk(−ω) =

ωk + ω

(ωk + ω)2 + γ2
(7.44a)

Ak(ω) =
γ

(ωk − ω)2 + γ2
; Ak(−ω) =

γ

(ωk + ω)2 + γ2
(7.44b)

We use the index convention that ωk = ω−k and thus Dk = D−k and Ak = A−k. Dk(ω) and

Dk(−ω) are antisymmetric and are zero at ω = ωk and ω = −ωk, respectively, whereas the
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Figure 7.1: Lineshape functions in damped response theory: Left: The solid line depicts the

dispersion lineshape function Dn(ω) for γ 6= 0, while the dashed line depicts Dn(ω) for γ = 0,

where a pole is obtained at ω = ωn. Note that the two functions approach each other when ω

is far-o�-resonance Right: The absorption lineshape function An(ω), where the full width at half

maximum equals the inverse lifetime Γ = 2γ.

Lorentzian functions Ak(ω) and Ak(−ω) are symmetric and reach their maximum values at

ω = ωk and ω = −ωk, respectively. Dn(ω) and An(ω) are plotted in Fig. 7.1.

For real wave functions, gb will be either purely real or purely imaginary as discussed above.

Assuming that the right�hand�side vector is real gb = gb
R, the structure of damped response

vector can be investigated at di�erent frequencies. The analysis in paper D may be summarized

as follows. Assuming that the excited states are all non-degenerate and that the spacing between

adjacent excitation energies is considerably larger than the inverted e�ective lifetime, i.e. γ <<

|ωn+1 − ωn|, we consider two cases:

• The resonant case, where the optical frequency is close to an excitation energy, ωb ≈ ωn

(assuming γ << ωb.). The real part of the damped response function is associated with

a dispersion lineshape function and the imaginary part is associated with an absorption

lineshape function

〈〈A;B〉〉Rωb
≈ Dn(ωb)A

0nBn0 (ωb ≈ ωn) (7.45)

〈〈A;B〉〉Iωb
≈ −An(ωb)A

0nBn0 (ωb ≈ ωn) (7.46)

• The far-o�-resonance case, where ωb is not close to any excitation energy. In this case,

the imaginary part vanishes, and the real part becomes approximately identical to the

standard response function.

〈〈A;B〉〉Rωb
≈ 〈〈A;B〉〉ωb

〈〈A;B〉〉Iωb
≈ 0 (7.47)
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If A and B are components of the electric dipole operator µα, then 〈〈µα;µβ〉〉ωb
describes a

component of the polarizability

ααβ = −〈〈µα;µβ〉〉ω (7.48)

and µ0n
α µn0

β describes a component of the dipole transition strength matrix for the |0〉 → |n〉

transition. 〈〈A;B〉〉Iωb
thus represents a residue spectrum with a peak broadening of Γ = 2γ

at full width half maximum. In the limit γ → 0, 〈〈A;B〉〉Iωb
represents a delta-peaked residue

spectrum. Thus, we explicitly see that the phenomenologically introduced damping factor γ does

indeed represent a broadening of absorption spectra, and it is therefore appropriate to interpret

Γ−1 as a common e�ective lifetime for the excited states.

The replacement in Eq. (7.39) may be applied to higher�order response equations (see

Eq. (7.29)), and since damped response equations to all orders have the same form, our for-

mulation is well�suited for the determination of damped response functions to arbitrary orders

in exact as well as approximate theories.

In standard response theory, the computational e�ort for determining molecular properties

from response functions and their residues may be minimized by applying rules for eliminating

higher-order response parameters from the response function expressions, e.g. Wigner's 2n +

1 rule [98] or alternative elimination rules described in Ref. [99]. In paper D we use the

quasienergy formulation of response theory [100, 101] and the response parameter elimination

rules of Ref. [99] to obtain simple expressions for standard response functions in terms of

standard response parameters. The standard response parameters are then replaced by the

corresponding damped response parameters giving damped response functions which comply

with the optimal elimination rule. Due to the fact that the generalized Hellmann-Feynman

theorem does not apply in phenomenologically damped response theory, the explicit structure

of a damped response function depends on the chosen elimination rule. However, this does not

pose any practical problems as long as the molecular property of interest is identi�ed using the

same rule as the exact and approximate levels of theory.

7.4 Hartree�Fock and Kohn-Sham DFT Response Theory

Time-dependent perturbation theory for Hartree�Fock states has a long history. The theory

of �rst-order molecular properties was �rst given by Ball and McLacland, using the time-

dependent Hartree�Fock approximation [102, 103]. Second- and higher-order molecular prop-

erties in Hartree�Fock theory were subsequently evaluated [104, 105]. Response-function theory

as it is used today�where response functions are subjected to pole and residue analysis to de-

termine molecular properties for both ground and excited states and for the transitions between

these states�was developed in the eighties [90] and has since been used to calculate a large

variety of molecular properties.

The quasi-energy approach developed in the nineties [100, 101] has tied response function

theory closely to energy-derivative techniques. Through the quasi-energy approach, response
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functions may straightforwardly be derived for both variational and non-variational wave func-

tions and used to calculate molecular properties for both ground and excited states, as well as

transition properties between these states [90, 101].

This section is a brief summary of PaperB. It is demonstrated that the AO based formulation

can be parametrized in a manner similar to the parametrization used in MO based response

theory. Using this approach, all previous MO based second quantization formulations may

be rewritten in the AO based formulation with only minor modi�cations. Paper B therefore

provides the tools for transforming an MO based formulation to an AO based formulation,

suitable for linear-scaling.

7.4.1 Second Quantization-Based AO Theory

In this section, we look at the aspects of second quantization that are relevant for deriving

response functions within a second quantization AO-based formalism.

We will roughly follow the outline of Section 7.2, but the wave function |0〉 will in this case

be a HF wave function, and the parametrization will be done in an AO basis in order to obtain

a linear�scaling formulation. The focus of this section is to demonstrate how the language

of second quantization can be used to parametrize the perturbed wave function similarly to

Eq. (7.2) for exact theory.

The atomic orbital based second quantization used here has not previously been used to

derive response functions, and it is relevant to review some of the details presented in Paper B.

In HF theory, the wave function is a single determinant given by

|0〉 = a†ia
†
j . . . a

†
l |vac〉 (7.49)

where {a†ia
†
j . . . a

†
l } refers to the set of occupied molecular spin orbitals that are occupied in |0〉.

Now consider a set of non-orthogonal atomic spin orbitals χµ with the Hermitian metric S.

The creation and annihilation operators of the AOs ful�ll the anticommutation relations [43]

[a†µ, a
†
ν ]+ = 0 [aµ, aν ]+ = 0 [a†µ, aν ]+ = Sνµ (7.50)

For a single-determinant state |0〉, we may de�ne the MO density matrix

DMO
pq = 〈0|a†paq|0〉 DMO =

(
1 0

0 0

)
. (7.51)

In a similar manner we may de�ne a matrix ∆ as the expectation value of the AO creation and

annihilation operators.

∆µν = 〈0|a†µaν |0〉 (7.52)

The orthonormal spin orbitals may be expanded in the AO basis (see Eq. (3.13)) and so may

the creation and annihilation operators

a†i =
∑

α

Cαia
†
α (7.53)
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The AO density matrix D = CDMOC† is related to ∆ by the transformation

∆ = STDTST (7.54)

To prove Eq. (7.54), we use Eq. (7.53) to obtain the relations

[a†p, aν ]+ =
∑

α

CαpSνα (7.55a)

[a†µ, ap]+ =
∑

α

C∗
αpSαµ (7.55b)

which can be used to show that

〈vac|al . . . ajaia
†
µaνa

†
ia

†
j . . . a

†
l |vac〉 = 〈vac|al . . . aja

†
µaνa

†
j . . . a

†
l |vac〉 +

∑

αβ

C∗
αiSναCβiSβµ (7.56)

Repeated use of Eq. (7.56) shows that Eq. (7.54) is valid. Thus, the AO density-matrix element

Dµν is only identical to the matrix element ∆µν in an orthonormal basis.

Turning our attention to the two-electron case, we show in Appendix A of Paper B that the

two-electron expectation value

Γµνγδ = 〈0|a†µa
†
γaδaν |0〉 (7.57)

decouples into products of expectation values of one-electron operators

Γµνγδ = ∆µν∆γδ − ∆µδ∆γν (7.58)

This decoupling is similar to the decoupling of the two-electron density matrix in the molecular

spin-orbital basis. It may therefore be argued that ∆ and Γ should be called the AO one- and

two-electron density matrices, respectively. However, in order to be consistent with standard

nomenclature, we shall refer to D as the AO density matrix, and to ∆ and Γ as the matrices of

expectation values of the one- and two-electron operators, respectively.

From the symmetry, trace and idempotency properties of the one-electron density matrix [43,

106]

D† = D (7.59)

TrDS = Nel (7.60)

DSD = D (7.61)

we straightforwardly obtain the following relations for ∆

∆† = ∆ (7.62)

Tr∆S−1 = Nel (7.63)

∆S−1∆ = ∆ (7.64)

We note that Eqs. (7.59)�(7.61) are necessary and su�cient conditions for a density matrix

to represent a normalized single-determinant wave function, and that Eqs. (7.62)�(7.64) are
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necessary and su�cient conditions for ∆ to represent a normalized single-determinant wave

function.

When a time-dependent external �eld is applied to the system, the wave function will change

as a function of time. It is therefore necessary to parametrize ∆ to describe a change of the

reference wave function |0〉 in Eq. (7.49) into another single�determinant wave function. We

parametrize using an exponential operator similar to Eq. (7.2)

T̂ = exp(iκ̂) (7.65)

where κ̂ is a Hermitian one-electron operator

κ̂ =
∑

µν

κµνa
†
µaν (7.66)

and κ (with elements κµν) is a time�dependent Hermitian matrix. We will show that

|0̃〉 = exp(iκ̂)|0〉 (7.67)

is a valid normalized single-determinant wave function, and that the parametrization of Eq. (7.65)

constitutes a complete parametrization.

The transformed wave function may be expressed as

|0̃〉 = exp(iκ̂)|0〉 = exp(iκ̂)a†ia
†
j . . . a

†
l |vac〉 = ã†i ã

†
j . . . ã

†
l |vac〉 (7.68)

where we have introduced the transformed creation operators

ã†µ = exp(iκ̂)a†µ exp(−iκ̂) (7.69)

which satisfy the same anticommutation relations as the untransformed operators

[ã†µ, ãν ]+ = [exp(iκ̂)a†µ exp(−iκ̂), exp(iκ̂)aν exp(−iκ̂)]+

= exp(iκ̂)[a†µ, aν ]+ exp(−iκ̂) = Sνµ (7.70)

The exponential operators exp(iκ̂) therefore represent the manifold of operators that conserve

the metric S.

Using the Baker-Campbell-Hausdor� (BCH) expansion [43] and the anticommutation rela-

tion of Eq. (7.50), the transformed and untransformed creation operators can be related

ã†µ = a†µ + i[κ̂, a†µ] −
1

2
[κ̂, [κ̂, a†µ]] + · · ·

= a†µ + i
∑

ν

(κS)µνa
†
ν −

1

2

∑

ν

(κS)2µνa
†
ν + · · ·

=
∑

ν

exp(iκS)νµa
†
ν (7.71)

In the special case where S = I, exp(iκ) represents a unitary transformation of the orbitals.

The expectation value of a†µaν for the transformed state becomes

∆̃µν = 〈0̃|a†µaν |0̃〉 = 〈0| exp(−iκ̂)a†µ exp(iκ̂) exp(−iκ̂)aν exp(iκ̂)|0〉 (7.72)
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Using Eqs. (7.69) and (7.71), we straightforwardly obtain

exp(−iκ̂)a†µ exp(iκ̂) =
∑

δ

exp(−iκS)δµa
†
δ (7.73a)

exp(−iκ̂)aν exp(iκ̂) =
∑

δ

exp(iSκ)νδaδ (7.73b)

Inserting these expressions into Eq. (7.72) gives

∆̃ = exp(−iSTκT)∆ exp(iκTST) (7.74)

which describes how ∆ transforms when the reference state |0〉 changes. If ∆ ful�lls Eqs. (7.62)�

(7.64), then so does ∆̃ de�ned in Eq. (7.72), as demonstrated in Appendix B of paper B.

We conclude that ∆̃ ful�lls Eqs. (7.62)�(7.64) and that exp(iκ̂)|0〉 is a normalized single-

determinant wave function. It may also be shown that all matrices satisfying Eqs. (7.62)�

(7.64) may be obtained by an appropriate choice of κ, so Eq. (7.65) constitutes a complete

parametrization.

7.4.2 Response Functions in AO-Based HF and KS Response Theory

Since the parametrization of Eq. (7.65) has the same structure as that of Eq. (7.2), the results

of Section 7.2 may be straightforwardly adopted with the replacement

X̂ → κ̂. (7.75)

The expansion of the expectation value in terms of the response parameters is identical to the

expansion of Section 7.2.1 (using Eq. (7.75)) and the linear response function is given by

〈〈A;V (ω)〉〉ω = −i〈0|[κ̂(1)(ω), Â]|0〉 (7.76)

The quadratic response function (and higher-order response functions) may also straightfor-

wardly be obtained from the expressions in Section 7.2.1.

The time evolution of |0̃〉 in the presence of the time-dependent perturbation may be deter-

mined using Ehrenfest's theorem[91] for the operator a†µaν

i
d

dt
〈0̃|a†µaν |0̃〉 = i〈0̃|(

∂

∂t
a†µaν)|0̃〉 + 〈0̃|[a†µaν , Ĥ]|0̃〉 (7.77)

Following the derivations of section 7.2.2, the Ehrenfest theorem results in a set of nonlinear

equations which de�ne the time-dependence of κ̂(t), and these equations will be solved order

by order to determine the parameters κ̂(i)(ω). The resulting equations can be directly adopted

from section 7.2.2 using the replacement

R̂p → a†µaν . (7.78)

By introducing the generalized Hessian E[2], metric S[2] and property gb tensors

E
[2]
µνγδ = 〈0|[a†µaν , [Ĥ0, a

†
γaδ]]|0〉 (7.79)

S
[2]
µνγδ = 〈0|[a†µaν , a

†
γaδ]|0〉 (7.80)

gb
µν = 〈0|[a†µaν , B̂]|0〉 (7.81)
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and renaming V̂ ω to B̂, the �rst-order response equations can be written in the form

(
E

[2]
µνγδ − ωS

[2]
µνγδ

)
κ

(1)
γδ = igb

µν (7.82)

in analogue with Eq. (7.21). Introducing

A
[1]
γδ = −〈0|[a†γaδ, Â]|0〉 (7.83)

the linear response function in Eq. (7.26) may in HF or KS theory be written in the form

〈〈A;B〉〉ω = −i〈0|[a†γaδ, Â]|0〉κ
(1)
γδ

= −A
[1]
γδ

(
E

[2]
µνγδ − ωS

[2]
µνγδ

)−1
gb
µν (7.84)

We now introduce the response vector NB
γδ(ω), which ful�lls the real equation

(
E

[2]
µνγδ − ωS

[2]
µνγδ

)
N b

γδ(ω) = gb
µν(ω). (7.85)

By combining µ and ν to a single capital index I, and γ and δ to a single capital index J , we

may introduce the super-matrix/vector notation

E[2]N b =
∑

I

E
[2]
IJN

b
J =

∑

γδ

E
[2]
µνγδN

b
γδ (7.86)

and obtain

(E[2] − ωbS
[2])N b = gb (7.87)

The linear response function may thus be calculated as

〈〈Â; B̂〉〉ω = −A
[1]
γδN

B
γδ(ω) (7.88)

The linear response function may thus be determined by solving one set of linear equations for

each frequency.

Paper B also provides the expression for the quadratic response function and the computa-

tional expressions required for implementation.

7.4.3 Linear Scaling

The time-consuming step in the computation of linear and higher order response functions is

the solution of the linear set of response equations (Eq. (7.85)). Coriani et al. [107] presented a

linear-scaling implementation, where the linear equations are solved using an AO�based iterative

preconditioned�conjugate�gradient method equivalent to the one that has been successfully used

in the MO basis. The method uses paired trial vectors to ensure that complex eigenvalues

do not arise during the iterations. The response equations are further preconditioned in an

orthogonalized�atomic�orbital basis in order to reduce the condition number of E[2] and to

make E[2] more diagonal dominant.
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7.4.4 Kohn-Sham DFT Response Theory

In section 7.4 we have derived an atomic orbital based Hartree-Fock response theory in a manner

closely related to a previously developed molecular orbital formulation [90]. This methodology

cannot directly be adopted for KS-DFT, but HF response theory can also be derived in terms

of an e�ective one electron operator which has the added advantage of facilitating the extension

to Kohn-Sham DFT (KS-DFT) response theory.

We refer the reader to Section VII and VIII of paper B

7.5 Hartree�Fock and Kohn-Sham Damped Response Theory

7.5.1 Equivalence between Exact and Approximate HF Response Theory

In this section, we describe how the treatment of damped response theory for an exact state in

Section 7.3.2 may be generalized to approximate variational methods such as HF and KS-DFT.

The E[g] and S[g] matrices discussed in the previous sections enter in the same way as in exact

theory, and therefore the procedure for obtaining damped response functions in Section 7.3.2

may also be applied in these theories. The only modi�cation is that the excitation/deexcitation

operator Rp in Eq. (7.4) must be replaced by the corresponding operator in the approximate

theory of interest. In single-determinant methods such as HF theory or KS-DFT, Rp represents

an orbital rotation generator, which mixes molecular HF or KS orbitals to generate the best

possible molecular orbitals for the HF or KS determinant.

To illustrate the equivalence between exact theory and a variational approximate theory, it

is convenient to express (E[2] − ωS[2])−1 in exact theory in the form

(E[2] − ωS[2])−1 =

(
(ωk − ω)−1 0

0 (ω∗
k + ω)−1

)

=
∑

k>0

[
(ωk − ω)−1xkx

†
k + (ω∗

k + ω)−1x−kx
†
−k

]

→
∑

k>0

[
(ωk − ω − iγ)−1xkx

†
k + (ωk + ω + iγ)−1x−kx

†
−k

]
(7.89)

where we have used Eq. (7.22) and introduced complex excitation energies according to Eq. (7.37),

and where the excitation vectors xk are given by

(xk)p = δpk (7.90)

and satisfy the generalized eigenvalue equation

E[2]xk = ωkS
[2]xk; E[2]x−k = −ωkS

[2]x−k (7.91)

which follows straightforwardly from Eqs. (7.22) and (7.90).

In HF and KS-DFT we may introduce also excitation vectors Xk as the eigenvectors of the

generalized eigenvalue problem (in the super matrix/vector notation, see Eq. (7.86))

E[2]Xk = ωkS
[2]Xk; E[2]X−k = −ωkS

[2]X−k (7.92)
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from which we can obtain excitation energies. For the molecular ground state, E[2] can be shown

to be positive de�nite (see paper B), and Eq. (7.92) may be viewed as a generalized Hermitian

eigenvalue problem with E[2] as the metric1. The excitation vectors may therefore be chosen to

be orthogonal with respect to the inner product induced by E[2]

X†
gE

[2]Xk = ωkδgk; (7.93)

and from Eq. (7.92)

X†
gS

[2]Xk = δgk; k > 0 (7.94)

X†
gS

[2]Xk = −δgk; k < 0 (7.95)

Using these relations, we may introduce a spectral representation of (E[2] −ωS[2])−1 (see paper

B) in HF, and KS-DFT and introduce complex excitation energies in analogy with Eq. (7.89)

(E[2] − ωS[2])−1 =
∑

k>0

[
(ωk − ω)−1XkX

†
k + (ω∗

k + ω)−1X−kX
†
−k

]

→
∑

k>0

[
(ωk − ω − iγ)−1XkX

†
k + (ωk + ω + iγ)−1X−kX

†
−k

]
(7.96)

It is clear that the equations in the approximate theories are completely equivalent to the

corresponding equations in exact theory (compare Eqs. (7.96) and (7.92) to Eqs. (7.89) and

(7.91)).

Therefore, all damped response equations in approximate theory have the form

[
E[2] − (ωb...f + iγ)S[2]

]
x̄b...f = igb...f (7.97)

with approximate Hessian and metric matrices E[2] and S[2]. This structure of damped response

equations for a variational approximate state was also obtained by Norman et al. [94, 96].

In conclusion, the strategy for obtaining a formulation of damped response theory for HF and

KS-DFT theory is equivalent to the one discussed in Section 7.3.2. Thus, a damped response

theory formulation may be obtained by replacing all standard response parameters by their

damped counterparts, and the calculation of approximate damped response functions therefore

becomes a matter of solving damped response equations of the form of Eq. (7.97)

In paper D we presented two algorithms for solving this equation. One algorithm for the

easy o�-resonant region, and one algorithm for the more complex region close to an excitation

energy.

7.5.2 Illustrative Results

In this section, we report calculations of 〈〈µα;µβ〉〉
I
ωb

related to the absorption spectra (see

Eq. (7.48)) for single-stranded DNA strings containing one and two adenosine nucleotides re-

ferred to as A1 and A2 in the following. We investigate the frequency range up to 0.6 a.u. and

1S[2] is not positive de�nite, and therefore not a valid metric
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7.5 Hartree�Fock and Kohn-Sham Damped Response Theory

the calculations have been carried out at the HF/6-31G level of theory using the geometry of

single-stranded DNA obtained from the Maestro program [108] without carrying out any addi-

tional optimizations. All calculations have been carried out using a local version of DALTON

[1].

In Fig. 7.2, results for A1 (�rst column) and A2 (second column) are given. In the �rst

row, the absorption spectra obtained from damped�response theory are shown. In the second

row, absorption stick spectra containing the �rst 50 excitations are presented (obtained from

the residues of the linear response function in standard response theory) with superimposed

Lorentzian lineshape functions as in Eq. (7.46). The third row shows the density of the �rst 50

excited states. It is seen that the density of the excited states increases drastically at higher

frequencies and for larger systems.

For A1, the �rst 50 excitation energies yield the absorption spectrum up to a frequency of

about 0.6 a.u. We again note that the absorption stick spectrum with a Lorentzian line-shape

function superimposed (second row, �rst column) is identical to the spectrum obtained using the

damped response theory (�rst row, �rst column) in accordance with the theoretical prediction.

For A2, the �rst 50 excitation energies only include low lying states up to 0.1 a.u. (second row,

second column), because the density of states increases signi�cantly with increasing frequency.

It is virtually impossible to calculate all the excited states in the frequency range between 0.1-0.6

a.u. Standard response theory therefore cannot be applied to evaluate the absorption spectrum

for this frequency range. DNA strings containing more than two nucleotides will have even more

low lying excited states, which furthermore increase the problems of using standard response

theory to evaluate the absorption spectrum in this frequency range. However, damped response

theory can be successfully used for obtaining the absorption spectra for larger systems at all

frequency ranges, as can be seen in the �rst row, second column of Fig. 7.2, where the damped

absorption spectrum for A2 is given up to a frequency of 0.6 a.u.
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Figure 7.2: Absorption spectra (xx component) for A1 (�rst column) and A2 (second column),

γ = 0.005 a.u. Top panel: Absorption spectra obtained using the damped response theory approach

described in Sec. 7.5; middle panel: First 50 excitation energies stick spectrum obtained using

standard response theory with superimposed Lorentzian lineshape functions; bottom panel: Density

of the �rst 50 excited states.
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Chapter 8

Geometric Gradients of Linear

Response Properties

In this chapter we present a Lagrangian approach for the calculation of molecular response prop-

erties which can be expressed as geometric �rst derivatives of generic linear response functions,

their poles and residues. The approach is implemented within the linear-scaling atomic-orbital

based formalism presented in section 7.4.1 at the level of HF and DFT.

Derivatives of electronic properties with respect to displacements of the nuclei, for brevity

denoted as geometric derivatives herein, are one of the key ingredients in describing the e�ect

of molecular vibrations on properties computed within the Born-Oppenheimer approximation.

As an example we consider the �rst geometric derivative of the transition dipole strength,

which yields information on how the motion of the nuclei will a�ect the UV spectrum (or one-

photon absorption, OPA) of a molecule through the so-called Herzberg-Teller (HT) contribution

(vibronic coupling between di�erent electronic states) [109�111]. Another example is the �rst

geometric derivative of the excited state energy, which gives the excited-state gradient, from

which the electronic excited state equilibrium geometry can be obtained.

Since the starting expressions for the transition dipole strength are in this thesis taken in

accordance with the atomic-orbital formulation of response theory presented in section 7.4.1, the

resulting properties are thus automatically guaranteed a linearly scaling behaviour for su�ciently

sparse matrices.

Paper F presented the �rst analytic implementation of the electronic transition dipole mo-

ment derivative in a DFT framework, and this chapter deal solely with this issue.

For the geometric gradient of the linear response function or its poles, we refer the reader to

paper F.

8.1 Transition Moment Lagrangian

The Lagrangian functional is build from the expression for the one-photon dipole transition mo-

ment µ0j
α , which can be obtained from the residue of the linear response function (See Eq. (7.27)).

63



Geometric Gradients of Linear Response Properties

Introducing the spectral representation of Eq. (7.96) into the expression for the linear response

function of Eq. (7.88) we obtain

lim
ωb→ωn

(ωb − ωn)〈〈Â; B̂〉〉ω =
(
A

[1]
γδX

n
γδ

)(
Xn

µνg
b
µν

)
(8.1)

In Eq. (8.1) we have used the Einsteins sum convention, and this will be used throughout this

chapter. By comparing Eq.(8.1) and Eq. (7.27) we identify the square of the transition matrix

elements as

A0nBn0 =
(
A

[1]
γδX

n
γδ

)(
Xn

µνg
b
µν

)
(8.2)

Eq. (8.2) does not by itself allow us to identify A0p only |A0p| [90]. The sign of the transition

matrix element is however not important for the description of molecular properties as transition

matrix elements are always squared in molecular property expressions [90]. We may chose the

identi�cation

A0n =
(
A

[1]
γδX

n
γδ

)
, (8.3)

and choose Â = µ̂α. The expression of A0n depends on the excitation vector Xn
γδ and orbital pa-

rameters κ. Both of these parameters have a complicated dependence on the nuclear coordinates,

and we may instead of a straightforward di�erentiation use the Lagrange's method of undeter-

mined multipliers to derive e�cient computational expressions for the geometic derivative of the

transition dipole moment.

We therefore construct the Lagrangian function for the transition moment, using the eigen-

value equation (Eq.(7.92)),the orthonormality condition (Eq. (7.94)) and the gradient condition

(E
[1]
µν = 〈0̃|[a†µaν , Ĥ]|0̃〉 = 0) as constraints.

L = A
[1]
γδX

n
γδ − λ̄µν

(
E

[2]
µνγδ − ωnS

[2]
µνγδ

)
Xn

γδ − ω̄
(
Xn

µνS
[2]
µνγδX

n
γδ − 1

)
− X̄µνE

[1]
µν . (8.4)

The Lagrangian may be made fully variational with respect to variations in the excitation vector

Xn and the orbital parameters κ by determining the lagrangian multipliers to ful�ll the equations

∂L

∂Xn
γδ

= 0 ⇔ A
[1]
γδ = λ̄µν(E

[2]
µνγδ − ωnS

[2]
µνγδ) + 2ω̄Xn

µνS
[2]
µνγδ (8.5a)

∂L

∂κφχ
= 0 ⇔ −

∂A
[1]
γδ

∂κφχ
Xn

γδ + λ̄µν


∂E

[2]
µνγδ

∂κφχ
− ωn

∂S
[2]
µνγδ

∂κφχ


Xn

γδ = X̄µν
∂E

[1]
µν

∂κφχ
. (8.5b)

Eq. (8.5a) determines both ω̄ and λ̄. Multipling with Xn
γδ we obtain an expression for the

multiplier ω̄

ω̄ =
1

2
A

[1]
γδX

n
γδ. (8.6)

Rewriting Eq. (8.5a) we obtain an equation for λ̄

(
E

[2]
µνγδ − ωnS

[2]
µνγδ

)
λ̄γδ = A[1]

µν − 2ω̄S
[2]
µνγδX

n
γδ. (8.7)

Eq. (8.7) have the form of a standard response equation similar to Eq. (7.85) with ω = ωn, but

as the response vector have a singularity at this frequency Eq. (8.7) cannot be solved using a
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standard solver. However, we may decompose λ̄γδ into a component which is orthogonal to Xn
µν

and a corresponding parallel component

λ̄γδ = aλ̄⊥γδ + bXn
γδ. (8.8)

λγδ would satisfy Eq.(8.7) independent of the value of b, due to Eq. (7.92). The second term

on the right hand side of Eq. (8.7) e�ectively project out the Xn
µν component of A[1], which

means that there is no Xn
µν component on the right hand side of Eq. (8.7) and using the spectral

representaion of Eq. (7.96) we conclude that b must be zero.

As Eq. (8.7) is solved by means of an iterative procedure based on trial vectors, we need to

ensure that the solution vector is kept orthogonal to the excitation vector Xn
γδ at each iteration

of the procedure. See paper E for a more detailed discussion of the algorithm.

The parameters X̄ may be determined from Eq. (8.5b), as di�erentiation with respect to

the variational parameters κµν gives a response equation from which we can determine the

multipliers X̄. using the relations

d

dκφχ
E

[2]
µνγδ =

d

dκφχ
〈0̃|[a†µaν , [Ĥ0, a

†
ρaσ]]|0̃〉 = E

[3]
φχγδµν (8.9)

d

dκφχ
S

[2]
µνγδ =

d

dκφχ
〈0̃|[a†µaν , a

†
ρaσ]|0̃〉 = S

[3]
φχγδµν (8.10)

d

dκφχ
V [1]

µν =
d

dκφχ
〈0̃|[a†µaν , V̂ (ω)]|0̃〉 = V

[2]
µνφχ (8.11)

d

dκφχ
A[1]

µν = −
d

dκφχ
〈0̃|[a†µaν , Â(ω)]|0̃〉 = 2A

[2]
φχµν (8.12)

d

dκφχ
E[1]

µν =
d

dκφχ
〈0̃|[a†µaν , Ĥ]|0̃〉 = E

[2]
µνφχ (8.13)

We may rewrite Eq. (8.5b) into a response equation similar to Eq. (7.85) with ω = 0.

E
[2]
φχµνX̄µν = 2A

[2]
φχγδX

n
γδ − E

[3]
φχγδµνX

n
γδλ̄µν (8.14)

Note that the terms which include S[3] can be shown to be zero.

8.2 The Transition Moment Gradient

Once the Lagrange multipliers have been determined, we can obtain the geometric derivatives

of the Lagrangian.

dL

dR
=

∂A
[1]
γδ

∂R
Xn

γδ −
1

2
(A

[1]
φχX

n
φχ)


Xn

µν

∂S
[2]
µνγδ

∂R
Xn

γδ


 (8.15)

+λ̄µν


∂E

[2]
µνγδ

∂R
− ωf

∂S
[2]
µνγδ

∂R
−
∂ωf

∂R
S

[2]
µνγδ


Xn

γδ − X̄µν
∂E

[1]
µν

∂R
(8.16)

However the term including
∂ωf

∂R
is zero since λ̄µνS

[2]
µνγδX

n
γδ = 0.
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8.3 Herzberg-Teller Contribution to the One-Photon Absorption

Spectrum

The electric transition dipole moment Mτι between two rovibronic states characterized by the

rovibronic wavefunctions Ψτ (r,R) and Ψι(r,R), which depend on the electronic spatial coordi-

nates r and the collective spatial coordinates R of the nuclei, is, in the adiabatic approximation,

given by

Mτι = 〈Ψτ |µ|Ψι〉 ≈ 〈Ψτ,t|〈t|µ|i〉|Ψι,i〉 = 〈Ψτ,t|µ
ti|Ψι,i〉 = Mτtιi, (8.17)

with the adiabatic electronic wavefunctions |t(r;R)〉 and |i(r;R)〉 depending explicitly on the

collective spatial coordinates of the electrons and parametrically on the collective spatial co-

ordinates of the nuclei. The wavefunctions Ψτ,t(R) and Ψι,i(R) for the motion of the nuclei

depend like the electronic transition dipole moment µti(R) only on the coordinates of the nuclei

constituting the system of interest.

If a Taylor expansion is applied to µti(R), around the equilibrium molecular structure R0

of the initial electronic state, the expansion yields

µki(R) = µki(R0) +
∑

β

∂µki(R)

∂Rβ

∣∣∣
R=R0

(Rβ −R0,β) + · · · (8.18)

Inserting this expansion to �rst'th order into Eq. (8.17) we obtain

Mτtιi = µti(R0)〈τt|ιi〉 +
∑

β

∂µti(R)

∂Rβ

∣∣∣
R=R0

〈τt|(R̂β − R̂0,β)|ιi〉. (8.19)

Mτtιi requires the evaluation of both Franck-Condon factors 〈τt|ιi〉 and HT integrals
∣∣∣
R=R0

〈τt|(R̂β−

R̂0,β)|ιi〉, in addition to the electronic transition dipole moments and the �rst derivative of the

electronic transition dipole moments.

The electronic transition dipole moments and �rst derivative of the electronic transition

dipole moments can be computed analytically using the the DFT-based framework developed in

this chapter, but the evaluation of Franck-Condon factors and HT integrals is beyond the scope

of this thesis, and the reader is refered to paper F, where we present and discuss the results of

a hybrid-functional DFT study of the vibronic �ne structure of the X̃(1A1g)-Ã(1B2u) transition

in the absorption spectrum of benzene. In the electric dipole approximation, this transition is

Franck-Condon forbidden (µkl(R0) = 0) and hence basically determined by the Herzberg-Teller

integrals and electronic transition dipole-moment derivatives.
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Chapter 9

Magnetic Circular Dichroism

9.1 Introduction

In an external magnetic �eld all matter becomes optically active, a phenomenon denoted Mag-

neto Optical Activity (MOA), which originates from a di�erential interaction of the sample with

the right and left circularly polarized components of the plane-polarized light. Two phenomena

may occur depending on the frequency of the incident light.

• Magnetic Optical Rotation (MOR) is a rotation of the plane of polarization, which occurs

when the magnetic �eld causes the two components of the incident light to propagate

through the sample with di�erent velocities. For a more thorough discussion of MOR, we

refer the reader to paper E.

• Magnetic Circular Dichroism (MCD) is an induced ellipticity of the incident linearly polar-

ized light, which occurs as the two components are absorbed to di�erent extents [93, 112�

116].

A common way to display a MCD spectrum is a plot of magnetically induced molar ellipticity

[θ]M in units of degree dl−1 dm−1mol−1G−1, normalized for unit strength of the magnetic �eld,

against wavenumber ν̃. For closed-shell molecules, MCD may be rationalized in terms of two

magnetic rotatory strengths, known as the Faraday A and B terms [115�121].

The Faraday A term originates from the Zeeman splitting of spectral lines into left and right

circularly polarized components. The A term only contributes in the presence of excited state

degeneracy and it do not have the shape of a standard absorption peak but rather that of a

derivative absorption peak, illustrated in Fig. 9.1.

Since relative intensities of the various bands in the absorption and MCD spectra can be very

di�erent, it is possible to use MCD spectroscopy in order to detect transitions that are absent or

di�cult to recognize in the absorption spectroscopy. The presence of nonzero A terms reveals

the presence of degenerate states, something which is in general impossible from an ordinary

absorption spectra.
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ω

(b) A negative A term

Figure 9.1: spectral pro�le for the Faraday A term for the transition to the exited state j
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The Faraday B term of MCD

B(0 → j)
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(a) A positive B term

ωj

The Faraday B term of MCD

B(0 → j)

ω

(b) A negative B term

Figure 9.2: spectral pro�le for the Faraday B term for the transition to the exited state j

The Faraday B term originates from a mixing of energy levels by the magnetic �eld and

contributes regardless of the degeneracies of the involved states. The contribution from the B

term have the shape of an absorption peak which can be either positive or negative (see Fig. 9.2)

and it therefore represents a valuable supplement to UV spectra when it comes to identifying

excited states, especially states hidden in UV spectra by overlapping bands.

The chapter is organized in the following way: First, we introduce the theory of MCD using

damped response theory of chapter 7.3, and derive formulas for the A and B terms. Second, we

show how individual A and B terms can be calculated using standard response theory, and the

result obtained using CCSD and DFT. Third, we discuss a numerical instability, which can be

circumvented using damped response theory.

9.2 Expression for the Ellipticity in terms of Response Functions

For plane-polarized light propagating in the Z direction of a space-�xed frame the ellipticity θ

of a sample of randomly moving molecules is, in the presence of a magnetic �eld directed along

the Z axis given by
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θ =
1

12
ωµ0clNεαβγRe

(
〈〈µα;µβ ,mγ〉〉ω,0

)
BZ (9.1)

This expression is in accordance with Ref. [93] (See Appendix 1 of paper I for more details). In

Eq. (9.1) m̂α and µ̂α are cartesian components of the magnetic and electric dipole operator in

the molecular-�xed frame, ω is the optical (laser) frequency, N is the number density, µ0 is the

permeability of free space, l is the length of the sample, and c is the speed of light in vacuum.

We have used the Einstein sum convention in connection with the Levi-Civita tensor εαβγ , and

〈〈µα;µβ,mγ〉〉ω,0 denotes a damped quadratic response functions in agreement with the notation

in Section 7.3 and paper D.

note that the ellipticity θ is related to the molar ellipticity [θ]M by

[θ]M =
Mθ

c · l
, (9.2)

where θ is the ellipticity in degrees, c the concentration in g/100cm3, M the molecular mass,

and l the path length in dm.

In order to obtain expressions which can more easily be compared to other derivations, we

remind the reader that

εαβγ〈〈µα;µβ,mγ〉〉ω,0 = εαβγ〈〈µγ ;mβ, µα〉〉0,ω (9.3)

and to ease the notation of the following sections we introduce the identi�cations

Â = µ̂γ , B̂ = m̂β, Ĉ = µ̂α (9.4)

and change the indices of the Levi-Cevita tensor accordingly (εαβγ → εcba) in the expression for

the ellipticity, i.e.,

θ =
1

2
KωRe

(
εαβγ〈〈µγ ;mβ, µα〉〉0,ω

)
=

1

2
KωRe

(
εcba〈〈A;B,C〉〉0,ω

)
(9.5)

where K = 1
6µ0clNBZ .

9.3 Calculating the Ellipticity using Damped Response Theory

Damped response theory can now be applied to obtain an expression for the damped quadratic

response function 〈〈A;B,C〉〉0,ω

In the absorptive region where ωc is close to an excitation energy ωj , only certain terms of the

full damped quadratic response function contributes signi�cantly, and for analysis purposes we

may disregard the remaining terms. The terms that contribute in the absorptive region are the

terms that would be singular in standard response theory (see Eq. (7.24) for ωc = −ωa ≈ ωj).
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It is therefore su�cient to consider only three terms and using the notation in paper I, we

may write the simpli�ed response functions as

〈〈A;B,C〉〉0,ωc
=
∑

p6=0

∑

q 6=0

B0p(Apq −A00δpq)C
q0

(ωp + iγ)(ωq − ωc − iγ)

+
∑

p6=0

∑

q 6=0

A0pBpqCq0

(ωp + ωa − iγ)(ωq − ωc − iγ)
+
∑

p6=0

∑

q 6=0

A0p(Cpq − C00δpq)B
q0

(ωp + ωa − iγ)(ωq − iγ)
(ωc ≈ ωj).

(9.6)

Note that the summations run over positive indices only. Close to resonance (ωc ≈ ωj) only

q = js
1 will contribute signi�cantly in the �rst term of Eq. (9.6), while for the second term

both q = js and p = js will contribute. Finally in the last term only p = js will contribute

signi�cantly. With these approximations one obtains

〈〈A;B,C〉〉0,ωc
=
∑

p6=0

∑

s

B0p(Apjs −A00δpjs)C
js0

(ωp + iγ)(ωj − ωc − iγ)

+
∑

p6=0

∑

s

A0pBpjsCjs0

(ωp + ωa − iγ)(ωj − ωc − iγ)
+
∑

q 6=0

∑

s

A0jsBjsqCq0

(ωj + ωa − iγ)(ωq − ωc − iγ)

+
∑

q 6=0

∑

s

A0js(Cjsq − C00δjsq)B
q0

(ωj + ωa − iγ)(ωq − iγ)
(ωc ≈ ωj). (9.7)

Introducing the dispersion Dj(ω) and absorption Aj(ω) lineshape functions of Eq. (7.44), we

may approximate Eq. (9.7) in the following manner

〈〈A;B,C〉〉0,ωc
=
∑

p6=0

∑

s

(
B0p(Apjs −A00δpjs)C

js0

)(
Dp(0) − iAp(0)

)
iAj(ωc)

+
∑

p6=0

∑

s

(
BpjsCjs0A0p

)(
Dp(−ωa) + iAp(−ωa)

)
iAj(ωc)

+
∑

q 6=0

∑

s

(
BjsqCq0A0js

)
iAj(−ωa)

(
Dq(ωc) + iAq(ωc)

)

+
∑

q 6=0

∑

s

(
(Cjsq − C00δjsq)B

q0A0js

)
iAj(−ωa)

(
Dq(0) + iAq(0)

)
(ωc ≈ ωj), (9.8)

where we have used that Dj(ωc) = Dj(−ωa) ≈ 0 (assuming γ ≫ |ωj −ωc|). Taking the real part

of this expression and combining terms using the Levi-Civita tensor yields

Re

(
εcba〈〈A;B,C〉〉0,ωc

)
= −2

∑

p6=0

∑

s

εcbaIm

(
B0p(Apjs −A00δpjs)C

js0

)
Dp(0)Aj(ωc)

− 2
∑

p6=0

∑

s

εcbaIm

(
BpjsCjs0A0p

)
Dp(ωc)Aj(ωc) (ωc ≈ ωj), (9.9)

where we have also used that ωa = −ωc. Writing out the explicit term for p = jt in the second

1s denotes a component of the possibly degenerate state j
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summation gives

Re(εcba〈〈A;B,C〉〉0,ωc
) = −2

∑

p6=0

∑

s

εcbaIm

(
B0p(Apjs −A00δpjs)C

js0

)
Dp(0)Aj(ωc)

− 2
∑

p6=0,p 6={j}

∑

s

εcbaIm

(
BpjsCjs0A0p

)
Dp(ωc)Aj(ωc)

− 2
∑

s,t

εcbaIm

(
BjtjsCjs0A0jt

)
Dj(ωc)Aj(ωc) (ωc ≈ ωj). (9.10)

where {j} denotes the set of (possibly degenerate) states with excitation energy ωj . The last

term only contributes for a degenerate state, and according to the discussion in Section 9.1 we

may de�ne this term as the A term.

Assuming that the excited states are well�separated, we may use the approximation

Dp(ωc) ≈
1

ωp − ωc
; ωc ≈ ωj , p 6= j (9.11)

to rewrite Eq. (9.10)

Re(εcba〈〈A;B,C〉〉0,ωc
) = −2

∑

st

Im

(
BjtjsCjs0A0jt

)
Aj(ωc)Dj(ωc)

− 2Aj(ωc)
∑

s

(∑

p6=0

Im(B0pApjsCjs0)

ωp
+ 2

∑

p6={j}

Im(BpjsCjs0A0p)

ωp − ωc

)
(ωc ≈ ωj), (9.12)

We can now introduce the Faraday A and B terms in accordance with Ref. [93]

A(0 → j) =
1

2

∑

st

εcbaIm

(
BjtjsCjs0A0jt

)
=

1

2
εcba

∑

s

B j̃sj̃sIm

(
A0j̃sC j̃s0

)
(9.13a)

B(0 → j) =
∑

s

εcba

(∑

p6=0

Im(B0pApjsCjs0)

ωp
+
∑

p6={j}

Im(BpjsCjs0A0p)

ωp − ω

)
. (9.13b)

For the A term we have expanded the real degenerate states js in complex states j̃s which

diagonalize the imaginary B̂ operator.

Eq. (9.12) may now be expressed in terms of the Faraday A and B terms

εcbaRe(〈〈A;B,C〉〉0,ωc
) = −2Aj(ωc)B(0 → j) − 4Aj(ωc)Dj(ωc)A(0 → j) (ωc ≈ ωj). (9.14)

Using that ωc = ω and inserting Eq. (9.14) into Eq. (9.5) we can obtain the following expression

for the ellipticity

θ = −
1

12
ωµ0clNBZ

(
2Aj(ω)B(0 → j) + 4Aj(ω)Dj(ω)A(0 → j)

)
(ω ≈ ωj) (9.15)

Noting that
∂Aj(ω)

∂ω
= 2Dj(ω)Aj(ω) (9.16)

we recognize that the Faraday B terms are associated with an absorption lineshape function, and

that the A terms are associated with a derivative lineshape function in agreement with previous

�ndings

θ = −
1

6
ωµ0clNBz

(
Aj(ω)B(0 → j) +

∂Aj(ω)

∂ω
A(0 → j)

)
(ω ≈ ωj). (9.17)
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Using Eq. (9.5) will therefore give a spectrum with contributions from both the Faraday A

and B terms. Damped response theory may be used to determine the MCD spectra for any

frequency range, and is therefore expected to become a very useful tool for calculating MCD

spectra at arbitrary frequencies, also for large molecules.

The A and B term contributions cannot be separated using Eq. (9.5), but the spectral pro�le

can be used to extract information about the individual A and B terms.

For clearly seperated peaks the A and B terms can be obtain according to the method-of-

moments [116, 122] formula, which exploit the knowledge of the lineshape functions associated

with the A and B terms 2.

B(0 → j) = −
1

33.53

∫

j

[θ]M
ν̃

dν̃ (9.18)

A(0 → j) =
1

33.53

∫

j

(ν̃ − ν̃0)
[θ]M
ν̃

dν̃. (9.19)

The units of [θ]M is deg dl−1 dm−1 mol−1 G−1 giving the A term in units of D2µB and the B

term in units of D2µB/cm
−1, where D stands for Debye and µB is the Bohr magneton.

In the case of overlapping bands no reliable results for the individual A and B terms can be

obtained. The experimentally obtained spectra face the same problem, and theoretical deter-

mined A and B terms can provide complementary insight into the origins of the MCD bands

observed experimentally.

The individual A and B terms can be calculated directly using standard response function

theory, and this will be the subject of the next section.

9.4 Faraday A and B terms using Standard Response Theory

Having de�ned the A and B terms of MCD in Eq. (9.13), these terms can be calculated as double

and single residues of standard response functions, respectively. The advantage of this approach

is that we directly calculate the individual A and B terms for each excited state. In contrast, a

mixed spectrum containing contributions from all A and B terms is obtained using the damped

response theory formalism in Sec. 9.3, see e.g. Eq. (9.17).

The B term can be identi�ed from a single residue of the quadratic response function [123]

B(0 → j) = −εcbaIm

{
lim

ωb→0

(
lim

ωc→ωj

(ωc − ωj)〈〈A;B,C〉〉ωb,ωc

)}
. (9.20)

In a similar manner the Faraday A term of Eq. (9.13a) can be obtained as a double residue of

the quadratic response function

A(0 → j) = −
1

2
εcbaIm

{
lim

ωb→0

[
lim

ωa→−ωj

(ωa + ωj)

(
lim

ωc→ωj

(ωc − ωj)〈〈A;B,C〉〉ωb,ωc

)]}
(9.21)

2The method-of-moments expressions rely on di�erent lineshape functions than Eq.(7.44), but the general

principle is applicable
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Eq. (9.20) has already in 1999 been used to determine the B terms using HF and the Multi-

con�gurational Self-Consistent-Field (MCSCF) model [123], but the result obtained in Ref. [123],

have an unphysical dependence on the gauge-origin of the magnetic vector potential.

Gauge-origin independence of many magnetic properties may be obtained using the pertur-

bation dependent London atomic orbitals (LAO) [124, 125], often referred to as gauge-including

atomic orbitals (GIAO). In section 2.3 of paper E, we show that any property that can be ex-

pressed as a magnetic derivative is automatically gauge-origin independent provided that LAOs

are used.

The A and B terms can be expressed as a magnetic derivative of the magnetic-�eld perturbed

excitation frequency [126] and one-photon dipole transition strength S0j
αβ(B) [127], respectively.

A(0 → j) = −
1

2
εαβγ

∑

s

(
∂ωjs

∂Bγ

∣∣∣∣
Bγ=0

)
Im(µ0js

α µjs0
β ) (9.22a)

B(0 → j) =
1

2
εαβγIm

(
dS0j

αβ(B)

dBγ

∣∣∣∣
Bγ=0

)
, S0j

αβ(B) = µ0j
α (B)µj0

β (B). (9.22b)

Eq. (9.22b) have been the starting point for both the CCSD treatment of paper A and the

DFT method presented in paper E. We note however, that Eqs. (9.21) and (9.20) can be used

to determine gauge-origin independent A and B terms using the recently developed framework

of Ref. [128], where perturbation dependent basis sets are an integrated part of the description.

This method is superior from an implementation point of view, as almost no property speci�c

programming is required, once the framework of Ref. [128] have been implemented.

9.5 Faraday B term within the Coupled Cluster Singles and Dou-

bles Model

Eq. (9.22b) have been implemented at the CCSD [127] level of theory and paper A, applied the

method to a number of selected molecules.

The complexity of most spectra, due to vibronic coupling and strongly overlapping bands,

often results in a crude estimate of the magnitude of the B terms, and the experimentally derived

values are then only expected to be slightly better than order-of-magnitude estimates[129].

Furthermore, the theoretical results do not take solvent or vibrational e�ects into account, thus

a quantitative agreement with experiment cannot be expected. However, for non-overlapping

bands the calculated B terms were found to be in good agreement with the experimental values.

This is illustrated in Table 9.1 where both calculated and experimental results [129, 130] are

listed for Pyrimidine

We note that uncertainties of about ten percent are typical for molecular properties obtained

at the CCSD level of theory. The CCSD/aug-cc-pVDZ oscillator strengths and B terms are

therefore expected to bear such an uncertainty, although this uncertainty is still much smaller

than the experimental uncertainty. The CCSD error is most obvious in the calculated excitation

73



Magnetic Circular Dichroism

State CCSD/aug-cc-pVDZ Experimental

f B term f [129] f [130] B term[129] B termf [130]

B1 0.006 -0.068 0.007 0.0073 -0.06 -0.076

B2 0.028 0.210 0.03 0.033 0.2 0.24

Table 9.1: The oscillator strengths f and the Faraday B terms (10−3D2µBcm) for the lowest

transitions of pyrimidine.
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Figure 9.3: Pyrimidine: Comparison of experiment and simulated MCD spectra for CCSD.

energies, and the theoretical CCSD spectra must be parallel displaced in order to obtain an

agreement with experiment, evident from Fig 9.3. Calculated CC3 excitation energies con�rms

that the major contribution for this parallel displacement is due to correlation beyond CCSD

as seen when comparing vertical CCSD and CC3 equilibrium-geometry excitation energies in

Table 9.2.

For overlapping bands, large deviations occurs compared to the experimental obtained B

terms. In order to examine this deviation, lineshape functions may be superimposed onto the B

terms in order to simulate the experimental spectrum. Using this method, the large deviation

is attributed to the large cancellation of positive and negative contributions which may occur

between positive and negative B term contributions, resulting in reduced magnitudes of experi-

State Vertical excitation Experimental

CCSD/aug-cc-pVDZ CC3/aug-cc-pVDZ

B1 4.64 4.46 4.222 4.293

B2 5.51 5.40 5.212 5.173

Table 9.2: Excitation energies (eV) for the lowest transitions of pyrimidine.
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Figure 9.4: Illustation of the cancellation which occurs between a positive and a negative B term

contribution (thin line) to the full MCD spectra (thick line). The dashed lines indicate the vertical

excitation energies.

mentally measured B terms. This is illustrated in Fig. 9.4. In addition, the peaks of the MCD

spectrum may also move, and the location of the peak maxima does not necessarly correspond

to a vertical excitation energy, this is illustrated in Fig. 9.4. The calculated B may therefore di-

viate from experimental obtained B terms, and great caution must therefore be exercised before

individual B terms are compared to experimentally obtained B terms.

For all the investigated molecules of paper A, the CCSD theoretically produced spectra are

in good agreement with the experimental spectra, and the CCSD results of paper A is still the

most accurate MCD results obtained to date.

9.6 Faraday B term within Kohn-Sham Density Functional Re-

sponse Theory

Eq. (9.22b) have also been implemented at the DFT level of theory using the Lagrange's

method of undetermined multipliers to derive e�cient computational expressions for the B term

(see paper E).

The method is similar to the method presented in Chapter 8 except for the last step where

the lagrangian function is di�erentiated with respect to a magnetic �eld instead of the nuclear

coordinates. For the full theoretical derivation, we refer the reader to paper E.

The B term of MCD represent quite a challenging task for DFT, since it requires an accurate

description of both the excited states, and the magnetic perturbation. To estimate the quality of

di�erent DFT functionals, TD-DFT results have traditionally been benchmarked against results

from higher level Coupled Cluster models, and for the DFT method of paper E we benchmark
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Figure 9.5: Pyrimidine: Comparison of simulated MCD spectra for CAMB3LYP and CCSD.

against the CCSD results of paper A.

The �rst excited state of pyrimidine was found to be quite well described, as illustrated in

Table 9.3, which contains the CAMB3LYP [131] and CCSD results for the �rst two excited states.

For the individual B terms, the deviation from the CCSD results seems to lack a systematic

behavior and we believe that an extensive benchmark study is required before a speci�c DFT

functional can be recommended.

CCSD/aug-cc-pVDZ-CM 3 CAMB3LYP/aug-cc-pVDZ

State ωf f B term State ωf f B term

1B1 4.64 0.006 -0.068 1B1 4.548 0.005 -0.065

1B2 5.51 0.028 0.210 1B2 5.799 0.046 0.528

2B1 6.51 0.006 -0.055 2B1 6.301 0.006 -0.069

2B2 6.68 0.008 0.017 1A1 6.651 0.042 -0.872

1A1 6.98 0.027 -0.267 2B2 6.836 0.004 0.0275

Table 9.3: The oscillator strengths f and the Faraday B terms (10−3D2µBcm) for the lowest

transitions of pyrimidine.

The TD-DFT MCD spectra was found to reproduce most of the qualitative features of the

CCSD spectra, at least for the �rst few excited states, illustrated in �gure 9.5.

Other MCD TD-DFT methods[123, 126, 127, 132�143] con�rm that the TD-DFT MCD

spectra reproduce most of the qualitative features of the CCSD spectra, although for this prop-

erty we would discourage the use of TD-DFT results as a predictive tool, until an extensive

benchmark study have been performed.

In the discussion of damped response theory, we mentioned that the density of states in-
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∂ω
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Figure 9.6: The degenerate E′ state (g) of cyclopropane in a D3h con�guration (depicted on the

right) will have both an A and a B term contribution to the ellipticity. Increasing one of the ĈCC

angles will break the D3h symmetry and give rise to the C2v con�guration (depicted on the left),

thereby breaking the degeneracy of the E′ state, which then evolves into two seperate states (f and

j) of B1 and B2 symmetry. These two states will both contribute with a B term.

creases signi�cantly with increasing frequency and molecular size. Theoretical determination

of individual B terms are therefore limited to small and medium size systems. This problem

is circumvented using damped response theory, but then no reliable individual B terms can be

obtained. In addition, the construction of theoretical MCD spectra based on individual B terms

can be problematic for near degenerate states. For near degenerate states the construction of

theoretical MCD spectra is numerically unstable. This instability is the focus of the next section

and may be remedied by the use of damped response theory.

9.7 Numerical Instabilities

Consider the cyclopropane molecule on the right of Fig. 9.6, which has a doubly-degenerate state

g with two components gf and gj . This degenerate state has an A and a B term contribution

to the MCD spectra illustrated in Fig. 9.6.

Changing one of the ĈCC angles of this molecule lowers the molecular symmetry from D3h

to C2v (Fig. 9.6 left) causing the degenerate g state to split into two non-degenerate states f

and j. The f and j states both have a B term contribution to the ellipticity.

Naturally, the MCD spectra should be a smooth function of the angle, and in this section we

show that as the ĈCC angle approaches 60◦ (i.e. going from left to right in Fig. 9.6) the two

B terms for f and j turn into a B term and an A term for the degenerate g state. The A term

enters when the states f and j approach each other because a factor in the lineshape function
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cancels a term in the original B terms for the states f and j. This cancellation is the reason

for the numerical instabilities observed when lineshape functions are superimposed onto the B

terms calculated using standard response theory. In contrast, using the damped response theory

formulation for MCD the lineshape functions are build into the theory and no such instability

occurs.

We now prove how the two B terms in Fig. 9.6 (left) turn into the A and B terms in Fig.

9.6 (right) when the molecular symmetry is changed. Assuming a ĈCC angle di�erent from 60◦

the ellipticity contribution from the two states f and j is denoted θfj and is given as

θfj = −KBZωAj(ω)B(0 → j) −KBZωAf (ω)B(0 → f). (9.23)

Inserting the lineshape functions yields

θfj = −
KBZωγ

(ωj − ω)2 + γ2
B(0 → j) −

KBZωγ

(ωf − ω)2 + γ2
B(0 → f), (9.24)

and introducing Q =
[
(ωj − ω)2 + γ2

][
(ωf − ω)2 + γ2

]
we obtain,

θfj = −
KBZωγ

[
(ωf − ω)2 + γ2

]

Q
B(0 → j) −

KBZωγ
[
(ωj − ω)2 + γ2

]

Q
B(0 → f).(9.25)

Since γ is a very small number we can neglect terms containing γ3. Inserting the B terms using

Eq. (9.13b) then gives,

θfj =
KBZωγ(ωf − ω)2

Q
εcba

(∑

p6=0

Im(B0pApjCj0)

ωp
+
∑

p6={j}

Im(BpjCj0A0p)

ωp − ω

)

+
KBZωγ(ωj − ω)2

Q
εcba

(∑

p6=0

Im(B0pApfCf0)

ωp
+
∑

p6={f}

Im(BpfCf0A0p)

ωp − ω

)
. (9.26)

In the second term we now write out explicitly the term containing p = f and in the fourth term

we do the same for p = j,

θfj =
KBZωγ(ωf − ω)2

Q
εcba

(∑

p6=0

Im(B0pApjCj0)

ωp
+

∑

p6={j,f}

Im(BpjCj0A0p)

ωp − ω

)

+
KBZωγ(ωj − ω)2

Q
εcba

(∑

p6=0

Im(B0pApfCf0)

ωp
+

∑

p6={j,f}

Im(BpfCf0A0p)

ωp − ω

)

+
KBZωγ(ωf − ω)2

Q
εcba

Im(BfjCj0A0f )

ωf − ω
+
KBZωγ(ωj − ω)2

Q
εcba

Im(BjfCf0A0j)

ωj − ω
. (9.27)

Note that the last two terms are singular in the absence of the lineshape functions at ω = ωf

and ω = ωj , respectively. This does not pose a problem in damped response theory where the

lineshape functions are an integrated part of the formulation, and the (ωf − ω)−1 singularity in

Eq. (9.27) is removed by the (ωf − ω)2 factor (and similarly for the (ωj − ω) term). However,

using the standard response theory formulation of MCD in Sec. 9.4, θfj may be numerically

unstable due to the presence of the (ωf −ω)−1 and (ωj −ω)−1 factors in the individual B terms

(see Eq. (9.13b)).
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9.7 Numerical Instabilities

Let us now change the ĈCC angle to 60◦, such that the non-degenerate states f and j

become degenerate (i.e. ωf → ωg, ωj → ωg, f → gf , and j → gj ). This changes Eq. (9.27) in

the following way,

θfj = KBZωAg(ω)
∑

j

εcba

(∑

p6=0

Im(B0pApgjCgj0)

ωp
+
∑

p6={g}

Im(BpgjCgj0A0p)

ωp − ωc

)

+
KBZωγ(ωg − ω)

Q

∑

jf

εcbaIm(Bgf gjCgj0A0gf ). (9.28)

In this equation, we have in the �rst term used the approximation Ag(ω) ≈
γ(ωg−ω)2

Q and we

recognize the B(0 → g) term from Eq. (9.13b). In the second term we have included terms which

are zero (Bgf gf = Bgjgj = 0) in order to obtain the summation over degenerate components and

recognize the A term in Eq. (9.13a),

θfj = −KBZωAg(ω)B(0 → g) − 2
KBZωγ(ωg − ω)

Q
A(0 → g). (9.29)

Inserting the denominator Q, we recognize the derivative lineshape function
∂Ag(ω)

∂ω
,

θfj = −KBZω

(
Ag(ω)B(0 → g) +

∂Ag(ω)

∂ω
A(0 → g)

)
(9.30)

We have thus established that θfj in Fig. 9.6 (left) turns into θfj in Fig. 9.6 (right) when the

f and j states become degenerate. We therefore see that the A term is nothing more than a

special occurrence of the B terms stemming from the excitation to a degenerate excited state.

However, in order to provide a smooth description as a function of the ĈCC angle, the lineshape

function must be an integrated part of the description as is the case for the damped response

theory formulation of MCD in Sec. 9.3. The standard response theory formulation of MCD

in Sec. 9.4, where the individual A and B terms are calculated may, be subject to numerical

instabilities as discussed in connection with Eq. (9.27). Care must therefore be exerted when

using this approach to simulate an MCD spectrum for a molecule with near degeneracies.

In conclusion, it is therefore recommended that the individual B terms are calculated when

possible, and that damped response theory are used in the case of near degeneracies or when

the density of states becomes to large.
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