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Preface

This thesis describes the work I have done during my three years and four months as PhD
student at the qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus
University, under the supervision of Poul Jørgensen from February 2012 to April 2015. All the
research projects I have worked on during my time as a PhD student have been linked to the
linear–scaling Divide–Expand–Consolidate (DEC) coupled cluster (CC) method that had been
developed in Aarhus and is implemented in the LSDALTON electronic structure program.

From the beginning, my work has been focused on the implementation of flexible, large–scale
algorithms, targeting supercomputers. At this stage, the DEC algorithm has been operational
for MP2, where an efficient multi–scale parallel scheme has been developed. The main focus,
however has been a conventional parallel algorithm for solving the DEC–fragment CCSD vector
equations on targeting supercomputers. From the start, technical challenges dominated the
research and thus my focus shifted more and more towards the technical aspects of supercom-
puting, parallelization, portability of the code, and workarounds for many not–self–inflicted
issues. During my time as a PhD student several visits of the Oak Ridge National Laboratory
(ORNL) and one visit at the Argonne National Laboratory (ANL), USA, have broadened my
understanding of supercomputing and parallelization. At ANL I have worked together with
Jeff Hammond, where I have learned many details about the message passing interface (MPI);
knowledge, which has been used to write a general framework for handling distributed tensors.
With this library at hand, it has been simple to implement a solver algorithm with minimal
memory footprint and use the technique in the CCSD algorithm in LSDALTON. Lately, I have
been working together with Dmitry Liakh from ORNL in order to improve the performance of
some of the tensor routines and as a consequence extent the application range of the, now
working, CCSD implementation. Besides some technical challenges and setbacks, which clearly
have dominated my time as a PhD student, I have been concerned with the accuracy of the
DEC method when moving beyond the MP2 model and the utilization of techniques in order
to reduce the pre–factor of a DEC calculation. All the details will be given in the individual
chapters of this thesis, which for sure is an enjoyable piece of literature.
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Chapter 1

Introduction

In natural sciences, the interplay between theory and experiment is one of the main driving forces
for obtaining ever more profound insights into natural processes. In molecular and solid–state
sciences, such as chemistry, physics, molecular–engineering, and molecular biology quantum
chemical calculations have become a standard tool to interpret and/or supplement experimental
data, to determine properties which are not possible (or difficult) to access experimentally, or
even to replace experiments. The accuracy and predictive power of modern quantum chemical
calculations have even developed to surpass certain experimental measurements, usually at a
lower cost, making quantum theoretical calculations attractive for science and industry.

In order to calculate molecular energies and properties, two principal methods have estab-
lished their usefulness, i.e. density–functional theory (DFT) and wave–function (WF) theory.
Whilst both are in principle exact, in the sense that all properties are described exactly in the
mathematical construction (the density or the WF), only WF theory provides a way to system-
atically approach the exact solution at a (usually) increasing computational cost, e.g. using the
highly successful coupled cluster (CC) hierarchy of WF models. Because of the cost of the WF
models, the DFT method has developed to become the method of choice, whenever the cost
of the corresponding WF calculation is high, the WF calculation is utterly impossible, or if a
qualitative result is sufficient. However, when highly accurate results are critical and the cost
is acceptable, WF calculations are usually used.

In the recent years, an extension of the application range of quantum chemical calculations
has emerged, both on the computational and theoretical levels. One of the prerequisites for
performing precise WF calculations for chemical systems of interest are computers, which are
able to process the immense amount of parameters occurring in such a calculation in a reasonable
time. Besides the speed of individual processors, the increasing degree of parallel processing
of modern supercomputers has proven to be exceptionally valuable when seeking a fast and
precise answer using WF theory. Yet, the progress in computational engineering alone cannot
remedy the high cost associated with a WF calculation, e.g., if a system of size N takes a day
to be processed on a modern computer, increasing the system size by a factor 10 (assuming a
O(N6) scaling algorithm and Moore’s Law [1]) it would take 34 years before a computer has
been developed which can process the increased calculation in a single day, and even longer for
larger systems (and/or more precise WF methods). Obviously, theoretical developments have
to complement the advances in computing for large systems to be treated in the near future.

In order to calculate molecular energies and properties of interest for the aforementioned
scientific disciplines, theories have been developed which are able to include the environment
of a region described by the expensive quantum mechanical (QM) calculation in a cheaper
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4 CHAPTER 1. INTRODUCTION

way, e.g. by coupling quantum and classical mechanics, a method which was awarded with the
Nobel prize 2013 [2]. However, also for these methods one faces the problem that an accurate
description can only be obtained if the QM region is large enough and treated at an appropriate
level of theory. It is therefore necessary to develop highly accurate WF methods, which are
applicable to systems of considerable size and, preferably, taking full advantage of the currently
available computational resources. All the developments in this thesis will therefore be centered
around pushing the limits for the application range for WF methods.

In Section 1.1 we give a brief introduction to WF theory based on second quantization. We
will then explain how WF calculations traditionally start out with a Hartree–Fock calculation [3],
and then being augmented with an additional correlation calculation. A summary of HF theory
is given in Section 1.2. For augmenting the Hartree–Fock result we have chosen to use the
coupled cluster hierarchy of methods [4–6], which will be briefly outlined in Section 1.3.

This thesis is divided into two parts. In Part I the focus will be on how a conventional model
of the coupled cluster hierarchy may be implemented to be run on modern super computer
clusters and Part II will be focused on how a linear–scaling coupled cluster algorithm with
energy based error control may be realized. Specifically, in Chapter 2 we discuss how the
nonlinear sets of equations, occurring in the WF models, may be solved in an optimal way.
In Chapter 3 we will discuss a parallel distributed data structure which is used throughout all
chapters of this thesis. In Chapter 4 we focus on how the time–determining part of a coupled
cluster calculation may be implemented in an efficient way and in Chapter 5 we discuss an
application of the implementation for calculating molecular interaction energies. Part II will
start out with analyzing the equations occurring in a conventional formulation of the coupled
cluster model under consideration in order to obtain a linear–scaling algorithm with rigorous
error control in Chapter 6. In Chapter 7 the parallelization of the linear–scaling algorithm is
discussed, and finally in Chapter 8 a possibility for reducing the overhead in the algorithm is
explored.

1.1 The electronic Schrödinger equation and second quantiza-
tion

The basis for all every WF theory is the well–known partial differential Schrödinger equation,
introduced by Erwin Schrödinger in 1926 [7]

ĤΨ = EΨ, (1.1)

given here in the time–independent version. Ψ is the WF and E is the electronic energy when
the Hamilton operator Ĥ is given in the Born-Oppenheimer (BO) approximation [8]. The BO
Hamiltonian reads

Ĥ = −1

2

Ne∑

i

∇2
i −

Ne∑

i

Nn∑

I

ZI
|ri − rI |

+

Ne∑

i≤j

1

|ri − rj |
+

Nn∑

I≤J

ZIZJ
|rI − rJ |

, (1.2)

where atomic units have been used. A summation over i/j (I/J) in the BO Hamiltonian runs
over all electrons Ne (nuclei Nn) of the system, ∇ is the differentiation operator, r denotes a
position, and Z is the atomic number of the respective nucleus.

Solving the Schrödinger equation results in the exact WF Ψ, which contains all the physi-
cal information about the system, but finding an exact solution is not possible except for the
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Table 1.1: Overview over the indices used in all the Chapters of this thesis unless stated otherwise.

a, b, c, d, . . . virtual MO labels
i, j, k, l, . . . occupied MO labels
p, q, r, s, . . . labels for MOs of unspecified occupancy
α, β, γ, δ, . . . AO labels
p, q, r, s, . . . generic labels referring to an AO or an MO basis

simplest systems. Usually, solving the Schrödinger equation computationally for multi–electron
systems involves the introduction of a set of one–electron WFs, which is used for the algebraiza-
tion. The spacial one–electron WFs φp(r) are called molecular orbitals (MOs) and they are
usually expanded in an underlying atomic orbital (AO) basis χα(r) (see Table 1.1 for index
conventions used in this thesis), where the MOs are expressed as

φp(r) =
∑

α

χα(r)Cαp, (1.3)

where Cαp are the orbital coefficients collected as a matrix C. In this thesis, we will only con-
sider real orbitals. In non–relativistic theories, the electronic spin may be taken into account
by multiplying the MO with one of the spin WFs α(ms) or β(ms) (ms is conventionally the
projection of the electronic spin angular momentum on the z axis of the chosen coordinate
system) to obtain a spin–orbital φp(r,ms). When using an orbital basis for expressing the ap-
proximate WF Ψ̃, it is convenient to work in terms of the second quantization formalism, which
by construction is antisymmetric with respect to fermion exchange. In the second quantization
formalism the BO Hamiltonian becomes [9]

Ĥ =
∑

pq

hpqÊpq +
∑

pqrs

gpqrsêpqrs + hnuc, (1.4)

where hpq (gpqrs) and Êpq (êpqrs) are the one (two) electron integrals and one (two) electron
excitation operators in the MO basis. The one– and two–electron singlet excitation operators
may be written as

Êpq = a†pρaqρ + a†pσaqσ, (1.5)

êpqrs = ÊpqÊrs − δqrÊps, (1.6)

where a† and a are creation and annihilation operators, respectively, ρ and σ refer to any of the
two possible values of the spin functions α(ms) and β(ms) and the rest of the indices refer to
the MO basis according to Table 1.1. The one and two electron integrals are then given as

hpq =

∫
φp(r,ms)

(
−∇

2

2
−

Nn∑

I

1

|r− rI |

)
φq(r,ma) drdms , (1.7)

gpqrs =

∫
φp(r1,ms1)φr(r2,ms2)

1

|r1 − r2|
φq(r1,ms1)φq(r2,ms2) dr1dms1 dr2dms2, (1.8)

hnuc =

Nn∑

I≤J

ZIZJ
|rI − rJ |

, (1.9)
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where we have used Mulliken notation for the two–electron integral in Eq. (1.8). If the one–
electron basis {φp} is complete, we may express the exact WF of Eq. (1.1), as

|Ψ〉 =

Ne∑

i

∑

µi

Dµi τ̂µi |0〉, (1.10)

where Dirac’s Bra-Ket notation was used, |0〉 is a reference WF, Dµi are the configuration
interaction (CI) coefficients and τ̂i is an excitation operator which excites i electrons in the
reference WF |0〉 to obtain a specific electronic configuration, e.g. for i = 1, 2, 3

τ̂ai = Êai , (1.11)

τ̂abij = Êai Ê
b
j , (1.12)

τ̂abcijk = Êai Ê
b
j Ê

b
k, (1.13)

...

Note that there are infinitely many possible configurations if a complete one electron basis is
used. In general, a complete basis is computationally intractable, ans only approximations to
the correct WF Ψ can be calculated. In practice, the one–electron basis will be truncated and
the number of configurations entering Eq. (1.10) will be limited. The exact WF in a given
truncated basis is called the full CI WF |FCI〉. From now on we will only be concerned with
truncated one–electron bases unless stated otherwise.

The reference WF for the CI expansion |0〉 in Eq. (1.10) is usually obtained by a Hartree–
Fock (HF) calculation, which will be discussed briefly in Section 1.2. Obtaining the full CI
WF is expensive due to a factorial scaling of the number of parameters with the number of
one electron WFs in the basis set and with the number of electrons in the system. Therefore,
truncated CI models have been proposed, where the configuration space is truncated at a
given excitation level, giving rise to the CI hierarchy of models — CI with singles and doubles
(CISD), CISD with triples (CISDT), . . . — which systematically approach the full CI WF [10].
This hierarchy of models has the feature that all ground state energies calculated will be an
upper bound to the exact ground state energy for the system. This feature is conventionally
referred to as the variation theorem and the CI energies are therefore variational. However, the
CI hierarchy of models (except for the full CI WF) is not size–extensive [9], i.e. the total WF for
a combined system is not multiplicatively separable into WFs for the individual systems, and
more importantly the energy determined for two non–interacting systems in a single calculation
will not equal the sum of the energies for two individual calculations on the subsystems. For this
reason, the CI hierarchy been superseded by the size–extensive coupled cluster (CC) hierarchy
of models which we will discuss in Section 1.3. Note that, in all the following chapters we will
only consider closed–shell WFs.

1.2 Hartree–Fock theory

For a closed–shell molecule the reference WF |0〉 is well approximated by a single Slater deter-
minant |cs〉 and the optimization of the HF WF may be parameterized as [9],

|HF(κ)〉 = exp(κ̂)|cs〉, (1.14)
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where κ̂ is an anti-Hermitian one-electron operator,

κ̂ =
∑

ai

κia(Êia − Êai). (1.15)

In Eq. (1.15), κia is an element of the associated anti-Hermitian κ rotation matrix, and Êai (Êia)
is a singles excitation (de–excitation) operator. In the HF approach the orbitals constituting
|cs〉 are determined variationally, i.e. the orbital coefficients C in Eq. (1.3) are optimized by
minimizing the HF energy. The optimization condition for the HF state then becomes

〈HF(κ)|[Eai, Ĥ]|HF(κ)〉 = 0, (1.16)

also known as Brillouin-Theorem. When this condition is fulfilled, |HF(κ)〉 becomes the opti-
mized HF state |HF〉. Furthermore, this condition is equivalent to requiring that the occupied-
virtual block of the Fock matrix F is zero. A Fock matrix element may be written as

Fpq = hpq +
∑

i

(2gpqii − gpiiq). (1.17)

Finally, the closed–shell HF energy may be written as

EHF = 〈HF|Ĥ|HF〉 = 2
∑

i

hii +
∑

ij

(2giijj − gijji) + hnuc. (1.18)

The HF approach is a mean–field approach in the sense that an electron moves independent of
the other electrons in the field generated by the nuclei and the other electrons while obeying
Pauli’s principle, i.e. the Ne-electron WF is antisymmetric upon the exchange of spin and
position of any two electrons. However, the electronic motion in molecules is correlated in two
ways. Static correlation arises in situations of near degeneracy of orbitals and requires a multi–
determinantal description of the ground state (unless the goal is to arrive at a full CI WF).
Since we work in the regime of closed–shell molecules in this thesis, the ground state will be
dominated by a single determinant and thus we are only concerned with describing dynamical
correlation effects. Electrons are dynamically correlated in the sense that minor fluctuations in
the electron density at a certain place in the molecule will have an effect on the neighboring
regions. These fluctuations may be categorized as coulomb–hole (electrons avoiding each other
because of the mutual repulsion), and dispersion effects. The mean field Fock operator (f̂) is
not capable of describing these two–electron effects and we therefore introduce the fluctuation
potential as the difference between the exact two–electron part of the Hamilton operator (ĝ)
and the two electron part of the Fock operator (V̂ ) as

Φ̂ = ĝ − V̂ . (1.19)

The exact Hamiltonian may then be expressed as

Ĥ = f̂ + Φ̂ + hnuc. (1.20)

Describing the electron correlation effects, e.g. with the full CI WF |FCI〉, will result in a
total energy that is lower than the energy captured by the HF approach. The difference between
the FCI energy (EFCI) and the HF energy is denoted the exact correlation energy (Eexact

corr )

Eexact
corr = EFCI − EHF. (1.21)
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1.3 CC correlation methods

Since the FCI WF is practically intractable for chemical systems of interest, approximations,
which should most desirably be hierarchical, have to be introduced. One way of approaching
the FCI WF in a systematic manner was mentioned before, the CI hierarchy of methods. It
was briefly discussed that the CI hierarchy is not size–extensive and may therefore not give
a physically correct description of large molecular systems. Here we will focus on the size–
extensive coupled cluster (CC) approach and establish the CC hierarchy of methods — second
order Møller–Plesset theory (MP2) [11], CC with singles and doubles excitations (CCSD) [12],
CCSD with a perturbative triples correction (CCSD(T)) [13], CCSD with triples (CCSDT) [14]
. . . where the focus is on the first three models of the hierarchy. We will briefly give the explicit
equations for each of these models as these will form the foundation for the rest of the thesis.

1.3.1 The coupled cluster parametrization of the WF

In coupled cluster theory the WF is parametrized in terms of excitation operators

T̂ =

Ne∑

i

∑

µi

T̂µi , (1.22)

where µi is an excitation manifold of excitations i ranging from 1 to the number of electrons
Ne in the system. For i = 1, 2, 3 . . . the operators T̂µi = tµi τ̂µi read

T̂1 = tai τ̂
a
i , (1.23)

T̂2 =
1

2!
tabij τ̂

ab
ij , (1.24)

T̂3 =
1

3!
tabcijk τ̂

abc
ijk , (1.25)

...

where the amplitudes tµi may be interpreted as the probability for a certain excitation. The
CC WF may be written in an exponential form

|CC〉 = exp (T̂ )|HF〉 (1.26)

and the coupled cluster Schrödinger equation becomes

Ĥ exp (T̂ )|HF〉 = ECC exp (T̂ )|HF〉. (1.27)

We may introduce the excitation manifolds

〈HF|τ̂ †µi = 〈µi|, (1.28)

to obtain the CC energy and linked CC equations by projecting Eq. (1.27) with the reference
state 〈HF| and the excitation manifolds 〈µi| from Eq. (1.28), respectively,

〈HF| exp (−T̂ )Ĥ exp (T̂ )|HF〉 = ECC, (1.29)

〈µi| exp (−T̂ )Ĥ exp (T̂ )|HF〉 = 0. (1.30)
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Since the |CC〉 state is expanded exponentially in the parameters tµi it is more convenient
to solve for the cluster parameters by projection, than by variationally optimizing the energy.
However, when using the projection technique, ECC will not be variational in the parameters
tµi . On the other hand, the exponential expansions in Eqs. (1.29) and (1.30) terminate after a
few terms. Thus, we may write the CC energy as

ECC = 〈HF|Ĥ(1 + T̂ +
1

2
T̂ 2 + . . . )|HF〉

= EHF + Ecorr, (1.31)

Ecorr = 〈HF|Ĥ(T̂ +
1

2
T̂ 2)|HF〉, (1.32)

where Ecorr is the correlation energy recovered with a given CC model. Since the Hamilton
operator is a two–electron operator and due to Brillouin’s Theorem in Eq. (1.16) we may write
the correlation energy Ecorr from Eq. (1.32) for any CC model as

Ecorr =
∑

iajb

τabij Liajb, (1.33)

where

τabij = tabij + tai t
b
j , (1.34)

and

Liajb = 2giajb − gibja. (1.35)

A given CC model is obtained by truncating the cluster operator in Eq. (1.22) at a given
order of excitations, e.g., for the CCSD model the cluster operator includes singles and doubles
excitations (i.e. i = 1, 2), for CCSDT additionally triples excitations (i.e. i = 1, 2, 3) etc. Note
that only doubles amplitudes appear for any CC model, which may include higher excitations
than doubles. The doubles amplitudes are affected by the higher excitations through the coupled
amplitude equations in Eq. (1.30) giving rise to a different correlation energy depending on the
CC model.

1.3.2 The MP2 model

To arrive at the MP2 model, a perturbation expansion of the CC energy in Eq. (1.27) in orders
of the fluctuation potential Φ̂ is truncated at first order [9]. This removes any than doubles
amplitudes from Eqs. (1.29) and (1.30). Thus, the correlation energy for the MP2 model may
be written as [9]

Ecorr =
∑

ijab

tabij Liajb, (1.36)

and the amplitude equations in Eq 1.30 are simplified to become the MP2 amplitude equation [9],

gaibj +
∑

c

(tcbijFac + tacij Fbc)−
∑

k

(tabkjFki + tabikFkj) = 0. (1.37)
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These equations are valid for any optimized HF molecular orbital basis. A conventional MP2
calculation employs the canonical HF basis where the Fock matrix is diagonal,

Fpq = δpqεp, (1.38)

where εp is a HF orbital energy. In the canonical basis the amplitude equations simplify to,

tabij = − gaibj
εa + εb − εi − εj

. (1.39)

In the canonical basis the solution of the linear equation in Eq. (1.37) is thus obtained directly
from the integrals without resorting to an iterative scheme.

1.3.3 The CC singles and doubles model: CCSD vector equations expressed
as effective CCD equations

To obtain the CCSD ansatz, the cluster operator in Eq. (1.22) includes singles and doubles
excitations (i = 1, 2). Using the T1 transformed formalism [15], the CCSD energy in Eq. (1.29)
and amplitude equations in Eq. (1.30) may be written as

〈HF|e−T̂2ĤT1eT̂2 |HF〉 = Ecorr, (1.40)

〈āi |e−T̂2ĤT1eT̂2 |HF〉 = 0, (1.41)

〈ābij |e−T̂2ĤT1eT̂2 |HF〉 = 0, (1.42)

We have used the notation of Ref. 15 where 〈āi | and 〈ābij | are shorthand notations for the singles
and doubles excitation manifolds in the biorthonormal representation. The label specification
used for the various orbital basis can be found in Table 1.1. ĤT1 is the T1 transformed Hamil-
tonian

ĤT1 = e−T̂1ĤeT̂1

=
∑

pq

h̃pqEpq +
1

2

∑

pqrs

g̃pqrsepqrs + hnuc,
(1.43)

which contains the T1 transformed integrals g̃pqrs, h̃pq. The T1 transformed one– and two–
electron MO integrals are obtained by a transformation from a generic basis

h̃pq =
∑

tu

ΛptpΛ
h
uqhtu, (1.44)

g̃pqrs =
∑

tuvw

ΛptpΛ
h
uqΛ

p
vrΛ

h
wsgtuvw. (1.45)

When the generic basis refers to the MO basis, Λp and Λq are given as

Λp = (1− tT
1 ), (1.46)

Λh = (1 + t1). (1.47)

When the generic basis refers to the AO basis, Λp and Λq become

Λp = C(1− tT
1 ), (1.48)

Λh = C(1 + t1). (1.49)
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Table 1.2: The CCSD residual equations using T1 transformed integrals as given in Ref. 9.

Contributions to the singles equations:

(A1) ΩA1
ai =

∑
cdk u

cd
ki g̃adkc

(B1) ΩB1
ai = −∑ckl u

ac
kl g̃kilc

(C1) ΩC1
ai =

∑
ck u

ac
ik

I F̃kc
(D1) ΩD1

ai = I F̃ai

Contributions to the doubles equations:

(A2) ΩA2
aibj = g̃aibj +

∑
cd t

cd
ij g̃acbd

(B2) ΩB2
aibj =

∑
kl t

ab
kl

(
g̃kilj +

∑
cd t

cd
ij g̃kcld

)

(C2) ΩC2
aibj = −

(
1 + 1

2 P̂ij

)∑
ck t

bc
ki

(
g̃kjac − 1

2

∑
dl t

ad
lj g̃kdlc

)

(D2) ΩD2
aibj = 1

2

∑
ck u

bc
jk

(
L̃aikc + 1

2

∑
dl u

ad
il L̃ldkc

)

(E2) ΩE2
aibj =

∑
c t
ac
ij

(
I F̃bc −

∑
dkl u

bd
kl g̃ldkc

)
−∑k t

ab
ik

(
I F̃kj −

∑
cdl u

cd
lj g̃kdlc

)

Notation and symmetries of intermediates:

(A3) P̂ijXaibj = Xajbi

(B3) uabij = 2tabij − tbaij
(C3) L̃pqrs = 2g̃pqrs − g̃psrq
(D3) I F̃pq =

∑
µν ΛpµpΛhνq

IFAO
µν

(E3) IFAO
µν = 2hµν +

∑
σλ D̃σλ(2gµνσλ − gµλσν)

(F3) D̃σλ =
∑

i ΛpσiΛ
h
λi

(G3) tabij = tbaji
(H3) Ωaibj = Ωbjai

The t1 matrix, which refers to the singles amplitudes in the MO basis, is given as

[t1]pq =

{
tpq if p virtual and q occupied
0 otherwise

}
. (1.50)

Note that the T1 transformed integrals have lower symmetry than the conventional MO integrals
and only the symmetry with particle exchange g̃pqrs = g̃rspq remains.

The CCSD amplitude equations in Eqs. (1.41) and (1.42) constitute a set of nonlinear
equations that may be solved using an iterative algorithm, e.g. the DIIS or CROP algorithm [16–
18], as will be detailed in Chapter 2. In each iteration the vector function

Ωai = 〈āi |e−T̂2ĤT1eT̂2 |HF〉, (1.51)

Ωaibj = 〈ābij |e−T̂2ĤT1eT̂2 |HF〉, (1.52)
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is evaluated for the trial solution and the DIIS or CROP algorithm is then used to determine
an improved trial solution. The time dominating step in an iteration sequence is the evaluation
of the vector function in Eqs. (1.51) and (1.52) for a trial solution.

Using the T1 transformed formalism and a biorthonormal representation of the singles and
doubles projection manifolds the CCSD doubles amplitude equations in Eqs. (1.51) and (1.52)
may be written as

Ωai = ΩA1
ai + ΩB1

ai + ΩC1
ai + ΩD1

ai , (1.53)

Ωaibj = P abij (
1

2
ΩA2
aibj +

1

2
ΩB2
aibj + ΩC2

aibj + ΩD2
aibj + ΩE2

aibj), (1.54)

where we have used the permutation operator P̂ abij Ωaibj = Ωaibj + Ωbjai. The individual con-
tributions for Eqs. (1.53) and (1.54) are given in Table 1.2. The number of terms entering
Eqs. (1.53) and (1.54) is considerably reduced compared to a formulation of the CCSD ampli-
tude equations, which does not use the T1 formalism, at the cost of reduced symmetry in the
integrals. We describe in Chapter 4 how the individual terms in Eqs. (1.53) and (1.54) may be
evaluated in a parallel computing environment without the use of local disks.

1.3.4 The CCSD(T) model

When moving up the CC hierarchy in the models defined by the cluster operator in Eq. (1.22),
the subsequent step after CCSD would be CCSDT. CCSDT, however, scales as O(N8) with
the system size and is therefore immensely expensive, especially recalling that Eq 1.30 is solved
iteratively. The method that has proven itself the “golden standard” of quantum chemistry [9] as
an approximation to the CCSDT model is called CCSD(T), where the effect of triples excitations
is included as a perturbative correction to the CCSD. The (T) correction to the CCSD energy
may be calculated without the need for an iterative scheme, which in combination with its
scaling behavior, i.e. O(N7), and a good description of triples effects, have given the CCSD(T)
method its reputation. The CCSD(T) energy is defined as [19]

ECCSD(T) = EHF + ECCSD + E(T), (1.55)

where E(T) is the so-called (T) perturbative correction to the CCSD energy for the effect of
triple excitations. The structure of E(T) is defined by two energy contributions rationalized

from many-body perturbation theory [20] (MBPT): E[4], a fourth-order term involving CCSD
doubles amplitudes, and E[5], a fifth-order term involving CCSD singles amplitudes

E(T) = E[4] + E[5]. (1.56)

In a basis of canonical HF spatial orbitals, the expressions for the fourth- and fifth-order con-
tributions may be derived from MBPT as [21]

E[4] =
∑

abc

∑

ijk

t̃abcijkt
abc
ijkε

abc
ijk , (1.57a)

E[5] =
∑

abc

∑

ijk

z̃abcijk t
abc
ijkε

abc
ijk . (1.57b)

In Eq. (1.57), the triples amplitudes {tabcijk} are given as

tabcijk = −P abcijk

∑
d t
ad
ij gckbd −

∑
l t
ab
il gcklj

εabcijk
, (1.58)
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where tabij are CCSD doubles amplitudes, εabcijk denotes the orbital energy difference between the
virtual and occupied orbitals of the excitation

εabcijk = εa + εb + εc − (εi + εj + εk), (1.59)

and P abcijk is a symmetrization operator

P abcijk x
abc
ijk = xabcijk + xacbikj + xbacjik + xbcajki + xcabkij + xcbakji. (1.60)

The zabcijk coefficients in Eq. (1.57b) are given as

zabcijk =
−(tai gjbkc + tbjgiakc + tckgiajb)

εabcijk
, (1.61)

where tai are the CCSD singles amplitudes, and an arbitrary six-index quantity x̃abcijk in Eq. (1.57)
is defined as

x̃abcijk = 2(2
3x

abc
ijk − xacbijk + 1

3x
bca
ijk). (1.62)

The expressions for the fourth- and fifth-order contributions in Eq. (1.57) both contain or-
bital energy differences, and the evaluation of the (T) energy correction by this conventional
formulation will thus be restricted to a basis of canonical HF orbitals.

Alternatively, the two correction terms in Eq. (1.56) may be derived from Lagrangian-based
CC perturbation theory for a HF reference state as in Refs. 9 and 22

E[4] = 2
∑

ab

∑

ij

(2tabij − tabji )T abij , (1.63a)

E[5] = 2
∑

a

∑

i

tai T
a
i . (1.63b)

In Eq. (1.63), the fourth- and fifth-order contributions to the (T) correction are formulated in
terms of the T abij and T aj intermediates, respectively

T abij =
∑

cd

∑

k

(
tacdijkLbckd − tacdkji gkdbc

)
−
∑

c

∑

kl

(
tabcikl Lkjlc − tabclki gkjlc

)
, (1.64a)

T ai =
∑

cd

∑

kl

(
tacdikl − tacdlki

)
Lkcld. (1.64b)

These expressions are valid in any basis, but for a non–canonical basis the tabcijk amplitudes may
not be obtained by Eq. (1.58) anymore. Instead, it will be necessary to solve the amplitude
equations

∑

e

(tebcijkFae + taecijkFbe + tabeijkFce)−
∑

m

(tabcmjkFmi + tabcimkFmj + tabcijmFmk)

= −P abcijk (
∑

d

tadij gckbd −
∑

l

tabil gcklj),

(1.65)

iteratively, to obtain the amplitudes.
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Comparing the evaluation of E(T) from Eq. (1.57) and from Eqs. (1.63) and (1.64), we note
that both expressions contain the triples amplitudes of Eq. (1.58), the generation of which scales
as O3V 4 (where O and V denote the number of occupied and virtual orbitals, respectively). In
Eq. (1.63a), the evaluation of the T abij intermediates in Eq. (1.64a) contains an additional O3V 4

scaling term, while the conventional expression in Eq. (1.57) contains no such term since each
triples amplitude is immediately contracted with either itself or a z coefficient in an O3V 3 step.
Thus if no additional cost–reductions are performed, it is more expensive to evaluate the (T)
contribution in a general basis, but it is important for the developments in Part II that the (T)
energy may be expressed in a non–canonical basis.

Now we have discussed the foundations this thesis rests upon and we will begin describing
the individual research projects of this thesis beginning with Part I, the massively parallel
implementation of the CCSD algorithm.



Part I

The Coupled Cluster singles and
doubles model
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Chapter 2

Solving the CCSD equations

This chapter summarizes the work of article 2

2.1 Introduction

The coupled cluster amplitude equations in Eq. (1.30) constitute a set of nonlinear equations
that in most electronic structure programs are solved using the DIIS (direct inversion of the
iterative subspace) algorithm [16]. For solving the coupled pair and cluster amplitude equations
the DIIS algorithm was introduced by Ahlrichs et al. [23] and Scuseria et al. [17], respectively.
In the DIIS algorithm trial vectors and corresponding vector function values (error vectors,
residual vectors) from the previous iterations are stored and used to obtain an improved trial
vector of the next iteration. The storage requirement of these trial vectors may become a
bottleneck in the DIIS algorithm. To circumvent this bottleneck, the trial vectors of the initial
iterations have been discarded, storing only the trial vectors of the last iterations. However,
this may lead to a serious abatement in the convergence and even divergence when the DIIS
algorithm is used.

When solving the CC amplitude equations, an optimal way of discarding information from
the previous iterations of a DIIS sequence is discussed, leading to the conjugate residual with
optimal trial vectors (CROP) sequence in which the trial vectors are stored in an optimal
way with respect to the linear part of the vector function, thus avoiding the abatement in
the convergence rate upon discarding trial vectors, present in the DIIS sequence. If no trial
vectors are discarded the CROP sequence and the DIIS sequence become identical. When CC
theory is applied for a state dominated by a single configuration, the CC equations have a
weak nonlinearity and in practice solving these only requires information from the last three
trial vectors. However also for a more pronounced nonlinearity, it is sufficient to keep the
information from the last three trial vectors, as will be demonstrated.

When solving a set of linear equations Ax + b = 0, two algorithms – the conjugate gradient
(CG) and the conjugate residual (CR) algorithms – share the common features that information
from the last three iterations are sufficient to maintain the convergence of the algorithm. In
the CG method this unique feature is obtained as a result of minimizing the quadratic function
f(x) = 1

2xTAx + xTb while for the CR algorithm it is obtained as a result of minimizing
the residual norm rT r (with r = Ax + b). For the CG algorithm, it is the conjugacy of the
directions with respect to the matrix A that makes the subspace truncations possible, while for
the CR algorithm, it is the conjugacy with respect to the matrix ATA and a generalization of
the residual concept to the regime of nonlinear systems of equations is straightforward.

17
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The CG algorithm was introduced into quantum chemistry more than 30 years ago by
Wormer, Visser and Paldus [24]. Van Lenthe and Pulay have demonstrated that a CI eigenvalue
problem could be solved with the CG algorithm using only three subspace vectors because the
eigenvalue is quadratic in the coefficients [25]. For solving sets of nonlinear equations Ziolkowski
et al. [18] introduced the CROP algorithm as a subspace generalization of the CR algorithm
and showed the connection between the CROP and DIIS algorithms.

To describe the simplified route for deriving the CROP algorithm, the properties of the CR
subspace method are summarized. Then consider a standard DIIS implementation is considered,
highlighting the connection to the CR subspace method, and describe how the DIIS algorithm
may be changed to a CR subspace implementation, and thereby turned into the CROP al-
gorithm. Finally, numerical results are presented for solving the nonlinear CCSD equations,
demonstrating the advantage of using the CROP algorithm compared to the DIIS algorithm.

2.2 Solution of the nonlinear coupled cluster amplitude equa-
tions

The CC amplitude Eq. (1.30) constitute a set of nonlinear equations in all (singles, doubles,
. . . ) cluster parameters t

〈µi| exp (−T̂ )Ĥ exp (T̂ )|HF〉 = 0, (2.1)

where |µi〉 are the excitation manifolds, written as a vector of the same dimension as the sum
of the dimensions of the individual manifolds. Interpreting this set of equations as a general
vector function

w(t) = 〈µi| exp (−T̂ )H exp (T̂ )|HF〉, (2.2)

our task is to determine the solution vector t∗ (the amplitudes), which satisfies

w(t∗) = 0, (2.3)

employing an iterative algorithm.
In iteration n of an algorithm for solving Eq. (2.3) we assume that a trial solution t(n) is

known and try to find an update ∆t(n) that gives an improved trial solution of iteration n+ 1

t(n+1) = t(n) + ∆t(n). (2.4)

Expanding the vector function w(t) around t(n)

w(t) = w(n) + W(n)∆t +O(‖∆t2‖), (2.5)

where w(n) and W(n) are the vector function and the Jacobian at t(n), respectively, and

∆t = t− t(n), (2.6)

we may determine an iteration function for the update ∆t(n) by setting Eq. (2.5) equal to zero
and neglecting the second order terms O(‖∆t2‖),

w(n) + W(n)∆t = 0. (2.7)
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The accuracy of the solution vector t for the set of linear equations Eq. (2.7) may be measured
by the residual

r(n)(t) = w(n) + W(n)(t− t(n)). (2.8)

When the linear equations in Eq. (2.7) are solved and a t(n+1) is determined such that

‖r(n)(t(n+1))‖2 = 0, (2.9)

the iterative procedure defined by Eq. (2.4) will be quadratically convergent.
The linear equations Eq. (2.7) are usually solved using an iterative procedure. Standard

iterative algorithms, as the conjugate gradient (CG) and conjugate residual (CR) methods [26]
require that a linear transformation of the Jacobian on a trial vector W(n)ttrial, is calculated
in each iteration. Since such a linear transformation is as costly as the evaluation of the vector
function w(ttrial) and since a large number of iterations are required to obtain a solution vector
to Eq. (2.7) that satisfies (2.9) it is in practice too costly to use a quadratically convergent
algorithm for obtaining t∗.

In the next section we summarize the CR subspace algorithm for solving the linear equations
in Eq. (2.7). In the subsequent section we describe a conventional DIIS implementation and
how it may be viewed in the context of the iterative scheme developed in this section. This then
allows to show how the DIIS algorithm may be modified to become a CR subspace algorithm
that in turn identifies the CROP algorithm.

2.3 The subspace CR method

We now summarize the CR subspace algorithm for solving the set of linear equations in Eq. (2.7).
We assume that we have carried out p iterations of a CR subspace algorithm and we thus know
the trial solution t[p] and the optimal directions of the previous iterations

P[p−1] = {p[1],p[2], . . . ,p[p−1]}, (2.10)

where p[i] = t[i+1] − t[i], i = 1, . . . p − 1, (t[1] = t(n)). Since the p[i] = t[i+1] − t[i] are optimal
directions (including length) in iteration i, the trial vectors t[i] may be interpreted as optimal

points. We further know the Jacobian linear transformed vectors s[i] = W(n)p[i] for the optimal
directions in Eq. (2.10)

S[p−1] = {s[1], s[2], . . . , s[p−1]}. (2.11)

Iteration p starts with generating the residual for the trial solution

r[p] = r(n)(t[p]) = w(n) + W(n)(t[p] − t(n)). (2.12)

The trial solution of the p+ 1th CR subspace iteration may be parametrized as

t[p+1] = t[p] +

p−1∑

i=1

αip[i] + αpr[p]. (2.13)

The optimal search direction of iteration p therefore is

p[p] =

p−1∑

i=1

αip[i] + αpr[p], (2.14)
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and may be determined minimizing the residual norm ‖r[p+1]‖2. The minimization may be
carried out solving a set of linear equations (see Ref [18] for details)




〈s[1]|s[1]〉 0 . . . 0

0
. . . 0 0

... 〈s[p−2]|s[p−2]〉 0 0

0 0 〈s[p−1]|s[p−1]〉 〈s[p−1]|b[p]〉
0 0 〈b[p]|s[p−1]〉 〈b[p]|b[p]〉







α1
...

αp−2

αp−1

αp




=




0
...
0
0

〈r[p]|b[p]〉



, (2.15)

where

b[p] = W(n)r[p], (2.16)

p[p] and t[p+1] may now be determined and s[p] = W(n)p[p] calculated using Eq. (2.16) and
s[i], i = 1, p − 1 from Eq. (2.11). p[p] and s[p] may now be added to P[p−1] and S[p−1] and the
sequence of CR subspace iterations is thus established.

The important feature of the CR subspace algorithm is the structure of the subspace equation
Eq. (2.15) where the solution does not depend on the initial p− 2 optimal trial directions. The
trial vectors from these p−2 iterations therefore may be discarded without affecting the subspace
solution. It is this feature that may be taken over in the DIIS sequence of iterations when it is
transferred to a CROP sequence.

To understand how a DIIS sequence of iterations may be modified to a CR subspace sequence
we write the CR subspace equation in Eq. (2.15) in a slightly modified form. The CR subspace
equations arise from a minimization of the residual norm in the basis spanned by p[i], i =
1, . . . , p−1 and r[p] (see Eqs. (2.14), (2.15)). As the norm of a vector is independent of the basis
in which it is expressed, any basis that spans the same space produces the same trial solution
t[p+1].

Considering t[p+1] in Eq. (2.13) and introducing a preliminary improvement

t̃[p+1] = t[p] + r[p], (2.17)

Introducing a new set of variational parameters ci, i = 1, . . . , p − 1 and cp+1 we may write
Eq. (2.13) after some modifications as

t[p+1] = t[p] +

p−1∑

i=1

ci(t[i] − t[p]) + cp+1(t̃[p+1] − t[p]), (2.18)

which describes a linear parametrization of the basis

TCR
[p+1] = {t[1], . . . , t[p], t̃[p+1], }, (2.19)

with t[p] as reference point. From the above derivation we see that TCR
[p+1] spans the same space

as is used for determining the optimal trial vector in Eq. (2.14). Using

r̃[p+1] = w(n) + W(n)(t̃[p+1] − t(n)), (2.20)

the residual of t[p+1] in Eq. (2.18) becomes

r[p+1] = (1−
p−1∑

i=1

ci − cp+1)r[p] +

p−1∑

i=1

cir[i] + cp+1r̃[r+1]

=

p∑

i=1

cir[i] + cp+1r̃[p+1],

(2.21)
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where we have introduced the coefficient

cp = 1−
p−1∑

i=1

ci − cp+1. (2.22)

Minimizing ‖r[p+1]‖2 of Eq. (2.21), with the constraint Eq. (2.22) will give the same subspace
solution as solving Eq. (2.15) since the subspaces of Eqs. (2.13) and (2.18) are identical.

From Eq. (2.15) we know that the optimal solution is spanned by r[p] and p[p−1] = t[p]−t[p−1].
The optimal trial vector is thus contained in the space that is spanned by t[p], t[p−1], and

r[p] = t̃[p+1] − t[p]. The coefficients ci, i = 1 . . . , p − 2 are therefore vanishing and the optimal
coefficients may thus be determined in the subspace

TRed
[p+1] = {t[p−1], t[p], t̃[p+1]}, (2.23)

by minimizing the residual

r[p+1] = cp−1r[p−1] + cpr[p] + cp+1r̃[p+1], (2.24)

where the variational coefficients satisfy

cp−1 + cp + cp+1 = 1. (2.25)

In iteration p of a conjugate residual subspace iteration the subspace solution may thus be
obtained either from a basis containing p[p−1] and r[p] solving Eq. (2.15) or from the basis TRed

[p+1]

minimizing the residual norm ‖r[p+1]‖2 of Eq. (2.24) with the constraint Eq. (2.25).

2.4 The DIIS method and its connection to the CR subspace
method

When the DIIS method is used to determine the solution vector t∗ in Eq. (2.3), the vector
function value w(t) may be interpreted as an error vector since w(t) − w(t∗) = w(t). At
iteration p of a DIIS sequence the sets of previous trial vectors

TDIIS
[p] =

{
t[1], t[2], . . . , t[p]

}
, (2.26)

and their associated error vectors

WDIIS
[p] =

{
w[1],w[2], . . . ,w[p]

}
, (2.27)

are known where w[i] = w(t[i]), i = 1, . . . p. The minimal error in the space of WDIIS
[p] is deter-

mined from a linear parametrization of the error vector space

wopt
[p] =

p∑

i=1

ωiw[i], (2.28a)

p∑

i=1

ωi = 1, (2.28b)
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where the weights ωi are determined from a constrained minimization using Eq. (2.28b) as
constraint. The optimal trial vector topt

[p] in DIIS is obtained assuming a linear relation between
trial vectors and error vectors

topt
[p] =

p∑

i=1

ωit[i], (2.29)

and the trial solution t[p+1] is constructed as the sum of the optimal contributions in their
respective spaces

t[p+1] = topt
[p] + wopt

[p] . (2.30)

w[p+1] = w(t[p+1]) is then calculated and the basis TDIIS
[p] and WDIIS

[p] are updated with t[p+1]

and w[p+1], respectively, giving

TDIIS
[p+1] = {t[1], . . . , t[p+1]}, (2.31a)

WDIIS
[p+1] = {w[1], . . . ,w[p+1]}, (2.31b)

and the DIIS sequence of subspace iterations is thus established.
Let us now consider a sequence of iterations where the optimal trial vectors topt

[i] of Eq. (2.29)

are stored together with t[p+1] of Eq. (2.30). We thus consider the basis of trial vectors and
error vectors

T aux
[p+1] = {topt

[1] , . . . , t
opt
[p] , t[p+1]}, (2.32a)

W aux
[p+1] = {wopt

[1] , . . . ,w
opt
[p] ,w[p+1]}. (2.32b)

From Eq. (2.29) it is seen that the basis T aux
[p+1] and TDIIS

[p+1] are spanning the same subspace and

the same subspace solution is therefore obtained whether the basis in Eq. (2.31) or the basis
in Eq. (2.32) is used, assuming a linear relation between trial vectors and error vectors. From
Eqs. (2.5) and (2.8) we further obtain

w(t[i]) = w(n) + W(n)(t[i] − t(n)) +O(‖(t[i] − t(n))‖2)

= r(n)(t[i]) +O(‖(t[i] − t(n))‖2).
(2.33)

Neglecting terms of order O(‖(t[i]−t(n))‖2) we can thus formally replace error vectors w[i] with

residuals r(n)(t[i]) = r[i].
New trial vectors in DIIS are obtained from Eq. (2.30) and in the CR subspace algorithm

from Eq. (2.17). For both the DIIS and the CR subspace algorithm an improved trial vector is
thus generated by adding the residual for the optimal trial vector to the optimal trial vector.
Further, the optimal trial vectors are obtained minimizing residual norms in both the DIIS and
the CR subspace algorithm. If the trial vectors of the DIIS algorithm are stored as in Eq. (2.32)
the DIIS and the CR subspace algorithm become therefore identical. When trial vectors in
DIIS are stored in accordance with (2.32) we may neglect trial vectors from all but the last
two iterations and thus determine the optimal expansion coefficients using Eqs. (2.23), (2.24)
and (2.25). The above is of course valid under the assumption of a weak nonlinearity in the
CC equation but this is anyway the fundamental assumption we have made in DIIS by using a
linear relationship between trial vectors and error vectors. The bases of Eq. (2.32) were originally
introduced by Ziolkowski et al. [18] and the algorithm that uses these vectors was denoted the
conjugate residual with optimal trial vectors (CROP) algorithm. The above derivation clearly
shows that a standard DIIS implementation may be changed to a CROP implementation by
altering a few lines of code as we discuss in Section 2.5.
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2.5 Implementation of DIIS and CROP

In the previous discussion common features of the CR subspace and DIIS algorithms were
identified and it was shown that merely the subspaces TDIIS

[n] and WDIIS
[n] of Eq. (2.31) have to

be replaced by T aux
[n] and W aux

[n] of Eq. (2.32) to move from a DIIS implementation to a CR

subspace implementation. In Section 2.3, new trial vectors are obtained from Eq. (2.17) while
in Section 2.4 they are obtained from the corresponding Eq. (2.30). To align the notation of
Eqs. (2.17) and (2.30) in the algorithms we use the notation of Eq. (2.30), i.e. t̃[p+1] = t[p] + r[p]

becomes t[p+1] = topt
[p] + wopt

[p] (r[p] is replaced by wopt
[p] according to Eq. (2.33)). The notation

of the equations referenced in the CR section has to be changed accordingly. It is furthermore
convenient to introduce a third type of basis, consisting only of the optimal trial/error vectors

T opt
[p] = {topt

[1] , . . . , t
opt
[p] }, (2.34a)

W opt
[p] = {wopt

[1] , . . . ,w
opt
[p] }. (2.34b)

The DIIS (Algorithm 1) and the CROP (Algorithm 2) algorithms are given side by side
to highlight the code changes necessary to move from an existing DIIS implementation to a
CROP implementation. In both algorithms, code lines 1 - 3 are identical initial steps, where
we have chosen to solve the (CCSD) equations in a (pseudo–) canonical basis. Note that t[1] in

TDIIS
[1] is identical to t[1] = topt

[1] in T aux
[1] . The first steps in the iterative loop are identical:

1. performing space truncations if necessary in lines 5-7,

2. obtaining the error vector in line 8,

3. checking for convergence in line 9,

4. adding the error vector to the iterative subspace in line 10, and

5. solving for an optimal error vector in accordance with Eq. (2.28)/(2.21) for DIIS/CROP
in line 11.

The optimal error/trial vectors in DIIS are constructed according to (2.28)/(2.29) and for CROP
according to (2.21)/(2.18) with (2.22) in code lines 12/13. In the CROP algorithm, the error/-
trial vector w[n]/t[n] in W aux

[n] /T aux
[n] has to be replaced by wopt

[n] /topt
[n] to arrive at W opt

[n] /T opt
[n] in

line 14/15 of Algorithm 2. All the following steps in the algorithm are identical in DIIS and
CROP, i.e., the construction of the new trial vector according to Eq. (2.30), and adding the
trial vector to the set of previous trial vectors.
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Algorithm 1: The DIIS algorithm

1: Diagonalize Fock and transform

to the diagonal basis

2: get starting guess t[1] and store T DIIS
[1]

3: f = 1

4: for n=1,maxiter

5: if(n>m):

6: truncate W DIIS
[n−1] and T DIIS

[n]

7: f = n − m + 1
8: get w[n] = w(t[n])
9: if ( ‖w[n]‖ < thr )exit

10: add w[n] to W DIIS
[n−1] → W DIIS

[n]

11: solve for ωi

12: wopt

[n] =
∑n

i=f ωiw[i]

13: topt[n] =
∑n

i=f ωit[i]

14: get t[n+1] = topt[n] + wopt

[n]

15: add t[n+1] to T DIIS
[n] → T DIIS

[n+1]

16: end iter

17: transform integrals and amplitudes

back to the original basis

Algorithm 2: The CROP algorithm

1: Diagonalize Fock and transform

to the diagonal basis

2: get starting guess t[1] and store T aux
[1]

3: f = 1

4: for n=1,maxiter

5: if(n>m):

6: truncate W opt

[n−1] and T aux
[n]

7: f = n − m + 1
8: get w[n] = w(t[n])
9: if ( ‖w[n]‖ < thr )exit

10: add w[n] to W opt

[n−1] → W aux
[n]

11: solve for ωi

12: wopt

[n] =
∑n−1

i=f ωiw
opt

[i] + ωnw[n]

13: topt[n] =
∑n−1

i=f ωit
opt

[i] + ωnt[n]

14: replace w[n] by wopt

[n] in W aux
[n] → W opt

[n]

15: replace t[n] by topt[n] in T aux
[n] → T opt

[n]

16: get t[n+1] = topt[n] + wopt

[n]

17: add t[n+1] to T opt

[n] → T aux
[n+1]

18: end iter

19: transform integrals and amplitudes

back to the original basis

The present implementation of the CROP algorithm in LSDALTON is written in terms
of the tensor library which will be discussed in Chapter 3. Therefore, the algorithm may
handle both dense tensors and parallel distributed tensors. Since the tensor library is used, the
CROP solver has minimal local storage requirements both because only three subspace vectors
are needed and because the vectors are allocated in a distributed fashion among all nodes.
Hence, both the algorithm and the computational realization are directed towards treating
large molecular systems on supercomputers. The time–determining step of a given iteration is
the evaluation of the vector function (line 8 in Algorithms 1 and 2). In Chapter 4 we will
explicitly discuss how the residual (error) vector may be constructed for the CCSD method.

2.6 Numerical results

In this section we compare the convergence of the DIIS and CROP algorithms numerically.
To illustrate the convergence properties we report CCSD (coupled cluster singles and doubles)
calculations on anthracene/ozone using Dunning’s cc-pVDZ/cc-pVTZ [28] basis set and solving
the CCSD equations in the canonical HF basis and in a local basis [27] obtained by minimizing
the second power of the second moment localization function, for both the occupied and virtual
orbital space.

For the anthracene (ozone) molecule the norms of the error vectors are plotted both, for the
CROP and DIIS algorithms, against the number of iterations in the canonical basis in Figure 2.1
(Figure 2.3) and in the local MO basis [27] in Figure 2.2 (Figure 2.4). We report calculations
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Figure 2.1: CROP (left) and DIIS (right) iteration sequences for a CCSD calculation on anthracene
using a cc-pVDZ basis in the canonical basis for the subspace truncation parameters m = 3, 5,∞.
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Figure 2.2: CROP (left) and DIIS (right) iteration sequences for a CCSD calculation on anthracene
using a cc-pVDZ basis in the local basis [27] for the subspace truncation parameters m = 3, 5,∞.
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for subspaces containing the last m = 3, 5,∞ trial vectors, where in the limit m = ∞ DIIS
and CROP give the same sequence of iterations. The iteration sequences for the subspace sizes
m = 3, 5,∞ are basically superimposed using the CROP algorithm, due to the weak nonlinearity
of the CCSD vector function which is independent of basis. For DIIS the choice of subspace
does have a considerable influence on the convergence, where the effect of discarding subspace
information is more severe in the local basis than in the canonical basis. Due to the weaker
diagonal dominance of the CCSD Jacobian in the local basis than in the canonical basis more
iterations are necessary to solve the CCSD amplitude equations in the local basis.

In contrast to anthracene, the ground state of ozone has a multi–configurational character,
and the nonlinear parts in the CCSD amplitude equations therefore become more prominent.
Still the CROP algorithm is capable of handling this situation and the iteration sequences for
CROP and subspace truncation parameters m = 3, 5,∞ are nearly indistinguishable. In partic-
ular, for ozone using the local basis, the DIIS algorithm suffers from the subspace truncation.
For the subspace truncation parameter m = 3, 445 iterations are required, while for m = 5,
convergence is obtained in 182 iterations. The calculations reported in Figures 2.1 - 2.4 clearly
demonstrate the efficiency of carrying out subspace truncations using the CROP algorithm.
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Figure 2.3: CROP (left) and DIIS (right) iteration sequences for a CCSD calculation on ozone using
a cc-pVTZ basis in the canonical basis for the subspace truncation parameters m = 3, 5,∞.

0 5 10 15 20
#Iteration n

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

N
or

m
of

th
e

er
ro

rv
ec

to
r‖

w
[n

]‖

CROP m = 3
CROP m = 5
CROP m = ∞

0 5 10 15 20
#Iteration n

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

N
or

m
of

th
e

er
ro

rv
ec

to
r‖

w
[n

]‖

DIIS m = 3
DIIS m = 5
DIIS m = ∞

Figure 2.4: CROP (left) and DIIS (right) iteration sequences for a CCSD calculation on ozone using
a cc-pVTZ basis in the local basis [27] for the subspace truncation parameters m = 3, 5,∞.
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2.7 Conclusion

The simplified route to obtain a connection between the CROP and the DIIS algorithm de-
scribed in this chapter simplifies the understanding of the CROP implementation considerably,
as compared to previous strategies. Furthermore, the numerical results underline the impor-
tance of using the CROP algorithm when solving CCSD equations, as a truncated subspace in
the CROP algorithm does not lead to a serious abatement in the convergence. The conclusions
drawn in this section become even more pronounced, when solving CCSDT (CCSDTQ, . . . )
equations as the nonlinearity of these equations is not far more pronounced, while the larger
trial vectors may increase the need for a subspace truncation.

The CROP algorithm is the ideal tool for solving non–linear equations, especially when a
supercomputer environment is targeted since a) due the reduced number of trial vectors only
minimal storage is required and thus I/O may be avoided altogether and b) the uncomplicated
implementation simplifies the distribution of the vectors, reducing the per–node memory re-
quirements to a minimum. How the memory distribution may be achieved is the subject of
Chapter 3.



Chapter 3

Handling of parallel distributed tensors in
LSDALTON

This section describes work published in the form of a LSDALTON software release [29] and is
mainly intended for the computationally inclined reader implementing in LSDALTON which
is why it contains many details about the implementation; in other words, this section may be
skipped.

Introduction

When describing many–body correlations in physics, mathematical objects with multiple indices
arise naturally in the derived formulae. These objects are known as tensors [30]. The number
of indices of a tensor is called the mode of the tensor, and the number of values a mode may
assume is called the dimension in that mode. Handling tensors on computers is aggravated by
the multiple indices of the tensors, since the data layout is usually linear. It has been an effort
in recent years to design computational libraries, which can handle tensors for modern high–
level mathematical programs and low–level programming languages, such as the Tensor Tool
Box [31], ltensor [32] or Cyclops [33]. However, for the low–level programming languages, one
would ideally want a standardized interface to high–performance vendor–optimized libraries,
which, currently, is not available. On the other hand, many mathematical methods and thus
computational tools, designed for linear algebra, can be applied to tensors directly or after
minor modifications of the tensor.

For vectors (one–mode tensors) and matrices (two–mode tensors), well–established low–level
tools exist for the most important operations. These, the Basic Linear Algebra Subprograms
(BLAS) and Linear Algebra PACKage (LAPACK) libraries, have standardized interfaces and
are usually vendor–optimized and they are therefore among the most efficient codes available
(in terms of utilizing the available computational resources). In fact, LinPACK, a predecessor
of LAPACK, is used to measure the performance of computational systems. Many tensor oper-
ations may be reformulated in a way such that they can utilize BLAS and LAPACK routines,
e.g. by explicit loops over (one or two mode) sub–tensors, which are fit to enter the standardized
BLAS and LAPACK interfaces. Another possibility is to unfold the full tensors as one or two
mode tensors (combining multiple indices to a common index, i.e. data sorting) and use BLAS
and LAPACK in connection with the unfolded tensor (or unfolding).

When calculations are to be performed with huge amounts of data (big matrices), there
are standardized tools (parallel BLAS and scalable LAPACK) that implement the parallel

27
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Figure 3.1: An example three mode tensor where each element of the tensor is indicated by a cube
with its column major global index as it would be stored in a linear stretch of memory allocated by
FORTRAN. We may write the dimensions in the modes as [4,3,5].
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distribution of vectors and matrices among the memory of up to hundreds of nodes as well
as the operations on the parallel distributed data. For tensors, a variety (but no standardized
set) of tools exist that do the same, but since another dependency layer of the LSDALTON
code is not desirable, the most important functions for carrying out parallel tensor algebra have
been implemented. This chapter will focus on the basic design ideas behind the parallel tensor
module in LSDALTON.

3.1 The tensor interface

The tensor interface in LSDALTON is designed for general tensor handling, while making
as much use as possible of the standard BLAS routines, which are usually highly optimized.
Currently, there are many tensor operations implemented for different kinds of tensors, e.g.,
dense tensors, replicated tensors (stored compactly on one node with copies on all other nodes),
(replicated) tiled tensors and parallel distributed tiled tensors, and combinations of these. Ten-
sor contractions are the most time–consuming operations in the algorithms we are interested
in, and we will therefore mainly focus on the implementation and performance of these. The
programming paradigm is always to sort the data, before making use of the BLAS routines.
This is motivated by the fact that the scaling of a tensor contraction is more expensive than
sorting the data before and after the contraction. For example, when contracting one mode of
two three–mode tensor with dimensions [in, kn, jn] and [mn, kn, ln], sorting the both tensors will
scale as in · jn · kn + mn · kn · ln, while the contraction will scale as in · jn · kn · ln ·mn, where
the ratio of the number of operations in the sortings and contractions is obviously dependent
on the contraction pattern. Thus, the sorting, when implemented efficiently, will usually be a
small part of the contraction. On the other hand, tensor additions (and similar BLAS-1 like
operations), which are associated with a sorting of the tensor, will be performed directly by the
sorting routines.
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3.1.1 Dense tensor algebra by tensor sorting and BLAS routines

In the FORTRAN programming language, tensorial quantities up to mode seven tensors may
be allocated directly as “multidimensional arrays”, e.g. for a mode three array
as real, pointer, dimension(:,:,:). This way of declaring tensorial quantities allows only
for easy access to the individual elements and/or sub–tensor extraction and does not straight-
forwardly allow for an (efficient) algebraic treatment of the data. Furthermore, the underlying
physical storage of the data will be vector–like, and therefore cache efficient algorithms need to
be used whenever tensor algebra is carried out. In order to use BLAS whenever possible, one of
the previously described strategies is required in order to map the tensor data to a matrix like
form. We have chosen the strategy of unfolding the tensors completely before calling a BLAS
routine with the fully unfolded tensor because the memory bound unfolding of a tensor may
almost achieve optimal performance in terms of memory bandwidth.

The tensor unfolding is a sorting of data, which has been implemented in LSDALTON,
using a python script that generates the FORTRAN code for all necessary data sortings. The
code generated by the script is designed to be easily understandable for the compiler, while
being cache efficient. In order to take advantage of shared memory processing (SMP), there is a
loop over blocks of data, which may be processed by different threads, see Algorithm 3. Each
operation (simple sorting (Algorithm 3), sort and add, and sort-scale-add) add have their own
kernel in order to avoid redundant operations (e.g., scaling with 1). Note that all the kernels
perform out–of–place operations, since it is simpler to avoid cache misses and thus increase the
performance of the algorithm.

Algorithm 3: Sorting kernel of a tensorial quantity for the [3,1,4,2]
sorting

!$OMP PARALLEL DO COLLAPSE (4)

do block4=1,nblocks4

do block3=1,nblocks3

do block2=1,nblocks2

do block1=1,nblocks1

do elm4 = 1,nelm4

do elm3 = 1,nelm3

do elm2 = 1,nelm2

do elm1 = 1,nelm1

new_order(elm1 ,elm2 ,elm3 ,elm4) = &

&old_order(elm2 ,elm4 ,elm1 ,elm3)

With an efficient sorting algorithm like this, all tensor contractions, e.g. the example con-
traction from the introduction has the contraction pattern

Ciljm = α
∑

k

AikjBmkl + βCiljm, (3.1)



30 CHAPTER 3. PDM TENSORS

and index restrictions

i ∈ in, j ∈ jn, k ∈ kn, l ∈ ln and m ∈ mn. (3.2)

The contraction may then be performed using BLAS routines and tensor sorting in the following
way

1. call sort A[in, kn, jn] with [1, 3, 2] to obtain A′[in, jn, kn]

2. call sort B[mn, kn, ln] with [2, 1, 3] to obtain B′[kn,mn, ln]

3. call dgemm with α, A′, B′, β and obtain C′[in, jn,mn, ln] (where the matrix dimensions
in dgemm are mgemm=in · jn, ngemm=mn · ln, kgemm=kn)

4. call sort C′[in, jn,mn, ln] with [1, 4, 2, 3] to add to β ·C[in, ln, jn,mn]

Of course, this strategy increases the memory requirements of the whole algorithm as A′, B′

and C′ need to be stored in addition to A, B and C, unless the memory may be reused if A
or B are not needed anymore. On the other hand, using a cache–inefficient in–place sorting
(or looping over, possibly non–consecutive, blocks of the tensor) makes the overall algorithm
prohibitively slow according to our (unpublished) test calculations. Thus, in order to keep
the memory requirements manageable, any algorithm using this strategy will have to use an
(explicit) workspace and the algorithm design should take the increased memory requirements
into account.

3.1.2 Distributed tensor algebra

Parallel memory distribution is achieved by splitting a tensor into tiles, which may then be
distributed over the group of nodes sharing the computation. Thereby the size of a tile will be
a compromise between load balancing and communication speed. Here, we will first write the
example tensor contraction from Section 3.1.1 for a tiled tensor. Then we will discuss the tiling
and tile mapping to the nodes as implemented in LSDALTON, and finally we will discuss the
implementation of a general BLAS-1 like operation and the current tensor contraction routine.

Using tiled algebra in connection with tensors has the attractive feature that a contraction
may be expressed using tiles in the same way as indices, restricting the indices to the tile. In
order to obtain a tile, the dimensions of the modes will be segmented, e.g., in will be segmented
into In segments of length I (similarly for jn, kn, ln and mn). A tile is then a sub–tensor with
the segments as dimensions (see Figure 3.2), e.g. one tile of tensor A may be written as AIKL.
We may then write the contraction of Eq. (3.1) for the CILJM tile as

CILJM = α
∑

K

AIKJBMKL + βCILJM , (3.3)

and restrict the indices as

i ∈ I, j ∈ J, k ∈ K, l ∈ L and m ∈M. (3.4)

Furthermore, the individual elements of the tile are contracted as Eq. (3.1), using the restrictions
in Eq. (3.4) rather than the restrictions in Eq. (3.2). Therefore, we may reuse the strategy
developed for dense tensors with the addition that a certain tile has to loaded into the local
memory at the time the contraction is carried out, i.e. before the contraction we add
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I. load tile AIKJ

II. load tile BMKL

and then execute the algorithm for local dense tensor contractions. Note that a node only needs
to load a subset of the AIKJ and BMKL tiles, i.e. only the tiles with coinciding I, J, L,M for
the CILJM that are stored locally. Also, in practice the tiles will be loaded asynchronously in
order to overlap communication with computation.

Tile mapping in LSDALTON

In LSDALTON, we have chosen the tile mapping in Figure 3.2, which assigns a global tile index
to the tiles in accordance with the column major numbering of elements in an array given by the
FORTRAN standard (beginning with 1). In order to calculate the mode tile index [t1, t2, . . . , tm]
and the index within a tile [d1, d2, . . . , dm] from the global index of an element [i1, i2, . . . , im] of
an m mode tensor with dimensions [in1 , in2 , . . . , inm ] and tile dimensions [dn1 , dn2 , . . . , dnm ]

[t1, t2, . . . , tm] with tk = b(ik − 1)/dnk
c+ 1, (3.5)

[d1, d2, . . . , dm] with dk = mod(ik − 1, dnk
) + 1. (3.6)

Furthermore, it is important to know how many tiles there are in each mode of the tensor. This,
we obtain as

[tn1 , tn2 , . . . , tnm ] with tnk
= dink

/dnk
e, (3.7)

and we may then calculate the column major index of a given tile c1, using the standard
expression

c1 = t1 +
m∑

r=2

(tr − 1)
r−1∏

s=1

tns , (3.8)

which may be used to calculate the index of the element in the tile c2, replacing the mode
tile index [t1, t2, . . . , tm] with the index in the tile [d1, d2, . . . , dm] and replacing the number of
tiles in each mode [tn1 , tn2 , . . . , tnm ] with the actual dimensions of the tile. In LSDALTON
padding the tiles with zeros if mod (ink

, dnk
) 6= 0 is implemented, but it was found to be simpler

to calculate the actual dimensions of the tile as

[dn1 , dn2 , . . . , dnm ] with dnk
=

{
dnk

if tk · dnk
< ink

mod(ink
, dnk

) otherwise

}
, (3.9)

and store the actual dimensions of the individual tiles (see Figure 3.2 for an example three mode
tensor).

When, for the same m-mode tensor, the identification of an element, in terms of the col-
umn major tile index c1 and the column major position in the tile c2 are available, the global
index [i1, i2, . . . , im] of the element may be calculated by first calculating the tile mode index
[t1, t2, . . . , tm] and the mode index of the element in the tile [d1, d2, . . . , dm] from c1 and c2

respectively. This may be done by the following elimination procedure

1: x1 = c1

2: for k = 1, m:

3: tk = mod(xk − 1, tnk
) + 1

4: xk+1 = (xk − tk) / tnk
+ 1
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Figure 3.2: Tiling of the example tensor of Figure 3.1 with the dimensions [in1 , in2 , in3 ] = [4, 3, 5]. The
tiles are chosen to be of size [dn1 , dn2 , dn3 ] = [1, 2, 3] and the (column major) global tile numbering is
written in bold next to the tile. This tiling patterns results in 16 tiles (4 tiles for the first mode, and 2
for the two other modes).
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(a) The four tiles of the (1,:,:) plane of the tensor
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front), c2 = 5 ([t1, t2, t3] = [1, 2, 1], right front),
c2 = 9 ([t1, t2, t3] = [1, 1, 2], left back) and c2 = 13
([t1, t2, t3] = [1, 2, 2], right back).
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(b) The four tiles of the (4,:,:) plane of the tensor
are indexed as c2 = 4 ([t1, t2, t3] = [4, 1, 1], left
front), c2 = 8 ([t1, t2, t3] = [4, 2, 1], right front),
c2 = 12 ([t1, t2, t3] = [4, 1, 2], left back) and c2 = 16
([t1, t2, t3] = [4, 2, 2], right back).

where, again replacing [t1, t2, . . . , tm] and [tn1 , tn2 , . . . , tnm ] with [d1, d2, . . . , dm] and [dn1 , dn2 , . . . , dnm ]
gives the procedure for c2. Once the mode indices are obtained, it is straightforward to calculate
the global index [i1, i2, . . . , im] as

[i1, i2, . . . , im] with ik = dk + tk · tnk
, (3.10)

and the position in a column major dense tensor is obtained using Eq. (3.8). Now the map-
pings have been discussed in great detail, and we are left to state that the tiles are distributed
according to their column major index c2 in a round robin fashion among the nodes (see Fig-
ure 3.3), where ,per default, the next tensor will have an offset o (equal to the sum of tiles in all
previously allocated tensors) in the distribution, such that the node n and the local tile number
of the tile on the node p may be calculated as

n = mod(c1 − 1 + o, nnodes), (3.11)

p = b(c1 − 1)/nnodesc+ 1, (3.12)

where nnodes is the total number of nodes over which the tiles are distributed (see Figure 3.3).
Note that the node n will be the rank of the respective node, i.e. the counting begins from 0,
while p is the pth tile on the node, beginning from 1. It is known that this type of layout is
not ideal with respect to a general tensor contraction, but we will demonstrate numerically in
Section 3.2 that also with this layout a reasonable performance may be achieved.

Tiled tensor operations

For both the dense and the tiled tensor operations, a number of routines have been implemented.
These routines range from simple memory aligned (BLAS-1-like) operations to tensor contrac-
tions and special functions necessary for the implemented correlation methods (CROP solver,
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Figure 3.3: Round–robin tile distribution of a tensor with 16 tiles on 7 nodes (nnodes = 7) where the
tile index is written in the node where the tile resides. The tiles for the next tensor will be distributed
with an offset as indicated by the primed tile indices.
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MP2, CCSD and DEC routines, see Chapters 2, 4, and 6). For all the implemented functions,
the strategy has been to first fill a buffer with MPI GET and, once it has been filled, begin to
work on the tiles using the sorting and BLAS (or specific operations) routines as outlined the
beginning of this section. Whenever it is possible, explicit OpenMP parallelization has been
introduced in the special routines (BLAS usually is OpenMP parallel). In the following, section
we will examine the scaling behavior of a single tensor contraction.

3.2 Results

In this section, we would like to demonstrate a) that local sorting in connection with a call
to dgemm is a fast approach, where the time used for sorting is only a fraction of the total
contraction time, and b) how the parallel tensor contractions implemented in the way outlined
in this chapter perform i) with respect to the local sorting, and ii) with respect to the number
of nodes and the tile size used for the contraction. All calculations have been performed on
Eos (see Section 9.2) using 1 or 15 OpenMP threads (plus one communication thread, see
Appendix A) for all calculations. We will compare results for the contraction

Cjnim =
∑

kl

AikljBmlkn, (3.13)

where we have chosen all tensors to be hypercubes with dimensions equal to 200, and the tiles
being hypercubes of varying dimensions from 10 to 120 in steps of 1. We have, on purpose, cho-
sen a contraction which involves three tensor sortings and only one call to dgemm. When carrying
out the contraction with all tensors and using 1 (15) thread(s), the time for the dgemm/+sortings
amounted to 5085.3 s/5102.5 s (442.8 s/447.3 s), where the reference for the dgemm+sortings
is shown in Figures 3.4a and 3.4c (3.4b and 3.4d) as a red horizontal line. Also, these timings
demonstrate that the sortings only account for about 1% of the total tensor contraction oper-
ation, and that the dgemm (sorting) scales well (fair) with respect to the number of cores with
a factor of 11.4 (3.8) for this tensor size. Of course, the size of the tensor and the contraction
pattern are rather beneficial for the ratio dgemm/sorting and other contraction patterns and
tensor dimensions will lead to a different ratio, which remains to be tested.

Figure 3.4a shows the timings for the contraction run on one thread per node (the red line
indicates the calculation on a single core), and thus we obtain the isolated speedup through the
MPI parallelization. Increasing the tile size for a given number of nodes initially reduces the
time fort the contraction and then becomes roughly constant. When the tiles become large, the
time for the contraction increases. The initial decrease occurs from tile sizes of about 78kb to
1,2Mb, and this is probably the region, where the communication changes from being latency
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Figure 3.4: We compare the timings and speedups of the example contraction from Eq. (3.13) for
2x nodes with x = 1 . . . 7. The reference timings and speedups are given as red horizontal lines. For
the speedups we have furthermore given the ideal speedup as a horizontal line in the same color as the
calculation series on a given number of cores.
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bound, to being bound by the transfer rate of the network. The increase in the required time
occurs in a region where there are not enough tiles to distribute among all nodes anymore and
thus fewer nodes will share the computation. Comparing the flat region to the ideal speedup
for the used number of cores for the contraction, shown in Figure 3.4c, shows that almost ideal
speedup has been obtained (for all numbers of nodes).

When using 15 OpenMP threads, the situation changes as shown in Figure 3.4b. Here, the
dgemm and sorting routines benefit from big chunks of data, because a) these routines are in
general more efficient when they have to process a lot of data (cache reuse), and b) the threads
have to be spawned and shut down many times for small tiles. Thus, there are two competing
effects, the more efficient OpenMP parallelization and the number of tiles, which should at least
match the number of nodes, resulting in an optimal tile size for a given number of nodes. It
is therefore in general less efficient with respect to the performance per core, when OpenMP
is used additionally and at least four nodes are needed in order to obtain a speedup for the
contraction. On the other hand, when memory distribution is the main goal, it is of advantage
that no (extreme) slowdown is associated with the distribution of data (given the right tile size
is used).

One way to avoid the decrease in performance loss, which is present for tile sizes from
106 − 107 bytes using 15 OpenMP threads (on all numbers of nodes) compared to using one
OpenMP thread per node, is to combine a number of preloaded tiles to one larger sub–tensor
before calling dgemm. Thus, spawning (and shutting down) the treads multiple times will be
avoided while using the vendor–optimized dgemm for larger chunks of data.

3.3 Conclusion and outlook

In this chapter we developed a strategy for the general handling of tensors in LSDALTON. We
have furthermore explained the strategy of performing local tensor contractions, given details
about how the tiles are obtained from a dense tensor in LSDALTON and discussed the distri-
bution of the tiles among the nodes. Furthermore, we have given the general strategy for how
tiled tensor operations are performed, and finally we have analyzed the performance of a tiled
tensor contraction in detail. Despite the rather good overall performance, we have identified
deficiencies when using OpenMP in connection with the current contraction strategy, and given
a possible solution. Despite this minor flaw, the tensor framework performs reasonably and its
importance in LSDALTON may increase, e.g. for avoiding the use of ScaLAPACK, which is
sometimes difficult to use.
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Chapter 4

Massively parallel CCSD

This section describes work published in the form of a LSDALTON software release [29]

4.1 Introduction

In the past years much effort has been directed toward making high precision calculations
possible for ever larger molecular systems. One way of systematically improving on the precision
of an electronic structure calculation is to ascend in the hierarchy of coupled cluster (CC) models,
CCSD, CCSD(T), CCSDT, etc. The standard implementation of the CCSD model has a sixth
order computational scaling with respect to system size, which severely restricts the application
range for the model. To extend the application range standard CCSD implementations were
restructured to allow for a parallel execution and today many parallel implementations with
greatly extended application range exist [33–36]. In order to be able to treat a wide range of
molecules efficiently a flexible conventional CCSD algorithm with increased application range
is needed. Even more so, because the CCSD calculation becomes the bottleneck in a CCSD(T)
calculation on medium sized molecules if accelerators are used in the (T)-part. In this chapter,
we describe an efficient parallel CCSD implementation for a large application range, containing
several improvements compared to previous parallel implementations. We also note that such
an adaptive CCSD algorithm becomes extremely useful in the divide-expand-consolidate (DEC)
framework where CCSD calculations are carried out on fragments of the full molecule.

In Chapter 2, it was shown how the CCSD equations are solved using iterative algorithms
(the DIIS and CROP algorithms) and in Chapter 3 it was shown how tensorial quantities may
be distributed in order to lower the local memory requirements. Here, we discuss how the
most expensive part of an iteration, i.e. the evaluation of the CCSD amplitude equations Eqs.
(1.41) and (1.42) for a set of trial parameters, is parallelized making use of the tensors from
Chapter 3. In order to evaluate the amplitude equations two fundamentally different strategies
have emerged. One strategy is to store the MO integral blocks needed during the evaluation of
the amplitude equations on file and to read them whenever required. Even if efficient screening
techniques are used and symmetries are exploited the required MO integrals eventually grow
very large since the required MOs are of the sizes V 4, V 3O, V 2O2, V O3 and O4, with O and V
being the number of occupied and virtual MOs, respectively.

The second strategy avoids the storage of MO integral blocks by recalculating the atomic
orbitals (AOs) in each iteration (integral–direct) in batches and evaluating the amplitude equa-
tions directly from the AO integral batches. The first strategy is usually faster but it is not
very scalable, while the second is scalable but suffers from the recalculation of the AO integrals

37
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in each iteration. Many intermediate approaches have been implemented, which usually avoid
to store the largest MO integral blocks V 4 and V 3O by integral–direct techniques and calculate
the cheaper terms from MO integral blocks [34–37].

The CCSD vector equations may be expressed as effective CCD equations using a T1 trans-
formed Hamiltonian [15] as described in Section 1.3.3. The integrals thus become dependent on
the cluster parameters and have to be modified in each iteration. Therefore, the T1 equations
are traditionally implemented using an integral–direct formalism. We break with that tradition
and formulate a MO–direct approach, where the full MO integrals are stored and T1 trans-
formed in each iteration. In combination with the AO integral–direct formulation we can set
up a switchable algorithm that is highly adaptive to the molecular system. In this way we seek
to implement an algorithm that works as efficiently as possible for a broad variety of molecules.
This strategy is particularly of advantage for algorithms like the DEC CC [38, 39] technique
where a broad variety of differently sized fragment CCSD calculations are run and where the
fragment basis M � O + V .

Among the most successful strategies for the evaluation of the amplitude equations are
furthermore a reduction in the overall scaling of the algorithm by reducing the scaling of the
most expensive term and avoiding the storage of the V 4 and V 3O integrals. A straight forward
implementation of the CCSD vector equations has the computational scaling of V 4O2, which
is the dominant scaling among all the terms of the CCSD vector equations. Saebø et al. [40]
and Scuseria et al. [41] showed how the computational scaling of this term could be reduced
to 1

4V
4O2 which has been implemented in an efficient integral density driven loop to scale

as 1
4M

4O2 by Kobayashi and Rendell [37]. We have introduced a small modification of the
AO integral density driven implementation which reduces the scaling to 1

4M
2V 2O2 and can

be calculated from an AO exchange density distribution only without the need for a coulomb
density distribution. Also, the term containing the V 3O integrals is evaluated in an alternative
fashion that does not require the V 3O integrals to be stored.

There are different technical possibilities to store the required integral blocks, and param-
eter vectors on modern computers. While there is a local hard–disk (HD) on most personal
computers and nodes on a commodity cluster which usually have the size of a few TB, modern
supercomputers feature a file–system (FS) storage, which may provide storage up to several PB.
However, HD and FS access is slow compared to memory and network access and if working
in the regime of many thousands of nodes even the fastest FSs will not be able to handle the
request when a file is accessed by all nodes at the same time. Therefore, we have designed
the current implementation to use the parallel distributed memory (PDM) storage provided
through the tiled–tensor framework described in Chapter 3.

Previous massively parallel implementations of the coupled cluster equations were written
with the assumption that quantities of sizes V 2O2 can be kept in the memory of a single node.
While this requirement still persists for one working array, all the integrals g, amplitudes t and
residual vectors Ω of that size can be stored in PDM. The algorithm distributes the memory
automatically, depending on the size of the system and the totally available memory in order to
retain performance when it is possible. In a future implementation we will remove the necessity
for the V 2O2 working array.

4.2 Evaluation of the CCSD amplitude equations

In this section we will discuss how the different terms of Table 1.2 may be evaluated optimally
for a broad variety of molecular system sizes. To facilitate the understanding, the notation is
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chosen such that p and r are used for batched indices, resulting in Np and Nr (nonuniform)
batches containing Bp and Br elements, respectively. The indices p and r refer generically to an
AO or MO basis as discussed in Section 1.3.3.

In Section 4.2.1, we will begin by considering how the equations for the second part of
the ΩA2 term, can be restructured to reduce the scaling from 1

4M
4O2 to 1

4M
2V 2O2 in an

integral direct implementation and how the resulting algorithm may be used in an MO–direct
implementation will be discussed in Section 4.2.2. In Section 4.2.3 we discuss how the storage of
the V 3O integral of the singles residual equations may be avoided. In Section 4.3 details about
the implementation are discussed, and in Section 4.4 we present numerical results. Finally we
conclude this Chapter by giving a summary in Section 4.5.

4.2.1 Treating the sixth order V 4O2 term in the integral–direct implementa-
tion: ΩA2

In this section we describe how the cost of the most expensive term in the CCSD residual
equations may be reduced. The scaling of the second term of ΩA2 of Table 1.2 (denoted ΩA2.2)
involves the contraction of doubles amplitudes with an integral that has four virtual indices. In
the limit of a large basis this term therefore becomes the most expensive in the CCSD residual
equation. Since this term is symmetric in the contraction pattern, we can use the permuta-
tional symmetries of the amplitudes t and integrals g̃ to reduce the cost associated with the
most expensive contractions. The computational scaling of the second term in ΩB2 of Table 1.2
(denoted ΩB2.2) may be reduced along the same lines as for ΩA2.2 as described in the last part
of this section.

Initially we recognize that the ΩA2.2 vector equation contribution may be constructed in two
ways

ΩA2.2
aibj =

∑

cd

tcdij g̃acbd

=
∑

pr

ΛppaΛ
p
rb

∑

cd

tcdij g̃pcrd =
∑

pr

ΛppaΛ
p
rbσ

pr
ij ,

(4.1)

ΩA2.2
ajbi =

∑

cd

tcdji g̃acbd =
∑

cd

tcdij g̃bcad

=
∑

pr

ΛppaΛ
p
rb

∑

cd

tcdij g̃rcpd =
∑

pr

ΛppaΛ
p
rbσ

rp
ij ,

(4.2)

where we have introduced the intermediate σmn
ij

σmn
ij =

∑

cd

tcdij g̃mcnd. (4.3)

In Eq. (4.2) we have exchanged the summation indices c and d and used the symmetry in the
amplitudes and integrals. The contribution ΩA2.2

aibj for free indices i, j may therefore be built

from ΩA2.2
aibj and ΩA2.2

ajbi with restricted indices i ≤ j and thus from σmn
ij with i ≤ j and free m, n.
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We will now evaluate σmn
ij for i ≤ j and free m, n restricting the summation indices to c ≥ d.

First, we rewrite σmn
ij in Eq. (4.3) as

σmn
ij =

∑

c>d

tcdij g̃mcnd +
∑

c<d

tcdij g̃mcnd +
∑

c

tccij g̃mcnc

=
∑

c>d

(
tcdij g̃mcnd + tdcij g̃mdnc

)
+
∑

c

tccij g̃mcnc.
(4.4)

Introducing the symmetric and antisymmetric combinations of the amplitudes and integrals

tcdij =
1

2

(
t+cdij + t−cdij

)
, (4.5)

t±cdij = tcdij ± tdcij , (4.6)

g̃mcnd =
1

2

(
g+
mcnd + g−mcnd

)
, (4.7)

g̃±mcnd = g̃mcnd ± g̃mdnc, (4.8)

Eq. (4.4) may be written as

σmn
ij =

∑

c>d

[
1

2
(t+cdij + t−cdij )

1

2
(g̃+

mcnd + g̃−mcnd) +
1

2
(t+dcij + t−dcij )

1

2
(g̃+

mdnc + g̃−mdnc)
]

+
∑

c

[
1

2
(t+ccij + t−ccij )

1

2
(g̃+

mcnc + g̃−mcnc)
]
. (4.9)

Using (4.6) and (4.8) we obtain

σmn
ij =

∑

c>d

[
1

2
(t+cdij + t−cdij )

1

2
(g̃+

mcnd + g̃−mcnd) +
1

2
(t+cdij − t−cdij )

1

2
(g̃+

mcnd − g̃−mcnd)
]

+
∑

c

[
1

4
t+ccij g̃+

mcnc

]
, (4.10)

noting that t−ccij = g̃−mcnc = 0. Only the pure symmetric and antisymmetric combinations, i.e.

t+g+ and t−g− contribute in the first term of Eq. (4.10). Further, the last term may be included
as a diagonal element in the symmetric combination

t̃+cdij = t+cdij −
1

2
δcdt

+cd
ij , (4.11)

giving

σmn
ij =

∑

c≥d

[
1

2
t̃+cdij g̃+

mcnd +
1

2
t−cdij g̃−mcnd

]
=

1

2

[
σ+mn
ij + σ−mn

ij

]
, (4.12)

where we have introduced

σ+mn
ij =

∑

c≥d
t̃+cdij g̃+

mcnd, (4.13)

σ−mn
ij =

∑

c≥d
t−cdij g̃−mcnd. (4.14)
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Using Eq. (4.8) we may write

σ+mn
ij = σ+nm

ij , (4.15)

σ−mn
ij = −σ−nmij , (4.16)

and we may thus obtain

σnmij =
1

2

[
σ+mn
ij − σ−mn

ij

]
. (4.17)

Consequentially, we can construct σmn
ij with free indices m, n from σ± with restricted indices

m ≤ n using Eqs. (4.12) and (4.17).
We now introduce σ in the CCSD vector equations

ΩA2.2
aibj =

∑

p≤r
ΛppaΛ

p
rbσ

pr
ij +

∑

p<r

ΛpraΛ
p
pbσ

rp
ij , (4.18)

and

ΩA2.2
ajbi =

∑

p≤r
ΛppaΛ

p
rbσ

rp
ij +

∑

p<r

ΛpraΛ
p
pbσ

pr
ij . (4.19)

If σ±mn
ij is available for m ≤ n and i ≤ j then we may evaluate the individual terms in Eqs. (4.18)

and (4.19) giving the contribution for the full ΩA2.2 term.
The dominating computational step for evaluating ΩA2.2 is the construction of σ±mn

ij for

i ≤ j and m ≤ n. From Eqs. (4.13) and (4.14) we see that each term requires a 1
8M

2V 2O2

transformation step, giving a total scaling of the ΩA2.2 term as 1
4M

2V 2O2. The remaining term
ΩA2.1 is a conventional four-step transformation without restrictions in the indices and thus fifth
order scaling, which will be constructed and integral density driven loop (the integral–direct
loop) and added direction to Ωaibj in each iteration.

The ΩB2.2
aibj terms may written as

ΩB2.2
aibj =

∑

kl

tabkl
∑

cd

tcdij g̃kcld

=
∑

klpr

tabklΛ
p
pkΛ

p
rlσ

pr
ij ,

(4.20)

and may thus be obtained as a byproduct when the ΩA2.2 term is constructed. For the remaining
term of ΩB2, intermediates from the previous four-step transformation can be reused and the
O4 integral can be added with index restrictions i ≤ j to a transformed version of σprij

ΩB2
aibj =

∑

kl

tabkl (g̃kilj + σklij ). (4.21)

4.2.2 Treating the sixth order V 4O2 term in the MO–direct implementation:
ΩA2

If the MO integrals gpqrs are stored, the memory requirement may be lowered by using the
symmetry of the indices. Technically it is simplest to use the restrictions of the paired indices
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p ≤ q and r ≤ s when storing the integrals in PDM. However, storing the integrals in this way
prohibits the strategy used for the AO integral–direct implementation given in Section 4.2.1.
Since it is still possible to use the index restrictions i ≤ j of the doubles amplitudes tcdij when

evaluating the ΩA2.2 term using Eqs. (4.1) and (4.2), the MO direct implementation has a
scaling of 1

2V
4O2. Despite the formally higher prefactor of the ΩA2.2 term using the MO–direct

algorithm compared to the AO integral–direct algorithm, the MO-direct implementation is in
practice faster for the system sizes it is designed for because the overhead in evaluating the AO
integrals is avoided. This will be demonstrated in Section 4.4.

4.2.3 Treatment of the ΩE2 contributions and the singles vector equations

In order to avoid storing the V 3O integrals, it the T1 transformed (AO– and MO–direct) al-
gorithms, we can exploit the similarities in the construction of the ΩE2, the ΩA1 and the ΩB1

terms. The ΩE2 term may be expressed as

ΩE2
aibj =

∑

c

tacij

[
I F̃bc −

∑

s

Λhsc
∑

dkl

ubdkl g̃ldks

]
−
∑

k

tabik

[
I F̃kj −

∑

p

Λppk

∑

cdl

ucdlj g̃pdlc

]

=
∑

c

tacij

[
Fbc −

∑

s

ΛhscHbs

]
−
∑

k

tabik

[
Fkj +

∑

p

ΛppkGpj

]

=
∑

c

tacij [Fbc −Hbc]−
∑

k

tabik [Fkj +Gkj ] ,

(4.22)

where the intermediates

Hbs =
∑

dlk

ubdkl g̃ldks =
∑

rpk

ubrkpg̃prks, (4.23)

Gpj =
∑

cdl

ucdlj g̃pdlc =
∑

crl

ucrlj g̃prlc, (4.24)

can be constructed from partially transformed integrals in the batched integral loop for both, the
integral– and MO–direct algorithms. The last transformation step as well as the last fifth order
contractions are then carried out outside the integral loop. However, the construction of the
ΩE2 from Eq. (4.22) scales as M3V O in the construction of the H intermediate in Eq. (4.23) and
as M2V O2 in the construction of the G intermediate in Eq. (4.24), compared to its evaluation
in the MO basis where these parts scale as V 3O2 and V 2O3. Despite being considerably more
expensive, than in the MO basis, constructing the intermediates scales only as O(N5) whereas
several other terms in the CCSD algorithm scale as O(N6), where N is a measure for the
system size. Therefore, we consider the increased scaling through the construction of the H
and G intermediates a small price to pay for avoiding the storage of the V 3O integral. Now we
explain how the storage of this integral is avoided.

The V 3O integral occurs only in the ΩA1. Due to the structural similarity of this term with
the ΩE2 we may use the previously constructed intermediate H to obtain the ΩA1 contribution.
Similarly, we can use the intermediate G for the construction of the ΩB1 contribution. A simple
exchange of dummy variables shows that Hbs and Gpj of Eqs. (4.23) and (4.24) can be used for
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constructing both ΩA1 and ΩB1 in an MVO scaling step

ΩA1
ai = 2

∑

p

Λppa
∑

cdk

ucdki g̃pdkc,= 2
∑

q

ΛppaGpi,

ΩB1
ai = −2

∑

s

Λhsi
∑

ckl

uackl g̃lcks,= −2
∑

s

ΛhsiHas.
(4.25)

If ΩA1 and ΩB1 is constructed in the MO basis this requires a V 3O2 and a V 2O3 scaling
operation. However, the major advantage of constructing the ΩA1 and ΩB1 contributions in
terms of the Hbs and Gpj intermediates is that the construction and storage of the V 3O integral
may be avoided.

The remaining two sixth order terms ΩC2 and ΩD2 of Table 1.2 may be evaluated in the MO
basis making extensive use of PDM techniques. Therefore, we chose to discuss the construction
of the ΩC2 and ΩD2 in the implementation Section 4.3 rather than in the theoretical discussion.

4.3 Implementation

In the previous section we have given the explicit equations used in the CCSD implementation.
In this section, we will detail the implementation of the CCSD amplitude equations and how
memory distribution is accomplished. Furthermore, we will discuss, how the AO integral–direct
formalism and the MO–direct formalism gave rise to (currently) five different levels of memory
distribution. In Section 4.3.1 we will focus on the implementation of the remaining sixth order
terms of the CCSD vector equations, i.e. the remaining contraction in the ΩB2 term and the ΩC2

and ΩD2 terms. In Section 4.3.2 we will discuss the difference of the five schemes for evaluating
the CCSD vector function.

4.3.1 Work distribution of the ΩB2, ΩC2 and ΩD2 terms

For the evaluation of the ΩB2, ΩC2 and ΩD2 terms, when all intermediates may be stored locally
on a node, work distribution is achieved by striped matrix multiplications, where the tensors
entering these terms are unfolded as matrices. The matrix stripes are chosen such that each
node has approximately an equal amount of work, by combining pairs of indices mt = V · O
from [ai], nt = V ·O from [bj], gt = V ·O from [ck], ht = V ·O from [dl], and letting each node
work on a stripe of length mp = mt

nnodes
, where nnodes is the number of nodes (mp is augmented

by 1 for the first mod (mt, nnodes) nodes, if mod (mt, nnodes) 6= 0). On each node, we may then
write the carried out contraction in the (unfolded) matrix form exemplified for the ΩD2 term
as

ΩD2
mpnt

=
1

2

∑

gt

(
L̃mpgt +

1

2

∑

ht

umphtL̃htgt

)
ugtnt . (4.26)

Another possibility is to compute all of these terms from parallel distributed tensors in tiles
allowing for streamlined preloading of tiles and computationally overlapping contractions of
these tiles using the tiled tensor framework described in Chapter 3. Using the capital indices
A,B, . . . I, J, . . . for a segment of the whole index range, and letting the small letters be defined
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Table 4.1: Summary of the currently implemented schemes in the CCSD algorithm.

scheme –direct (main) local storage tensor MPI ACCUMULATE

requirements contractions

5 MO 1/4M4 + 7 · V 2O2 Eq. (4.26) No
4 MO 1/(4 · nnodes)M

4 Eq. (4.26) Yes
+7 · V 2O2

3 AO 7 · V 2O2 Eq. (4.26) No
2 AO 4 · V 2O2 Eq. (4.26) Yes
1 AO 1 · V 2O2 Eq. (4.27) Yes

in the segments a ∈ A, b ∈ B, . . . i ∈ I, j ∈ J, . . . we can write the same contraction as

ΩD2
AIBJ =

1

2

∑

CK

(
L̃AIKC +

1

2

∑

DL

uADIL L̃LDKC

)
uBCJK , (4.27)

ΩD2
aibj =

1

2

∑

ck

(
L̃aikc +

1

2

∑

dl

uadil L̃ldkc

)
ubcjk, (4.28)

where Eq. (4.27) in contrast to Eq. (4.26) does not require any quantity of the size V 2O2 to be
stored in local memory. On the other hand, if L̃hg can be stored locally for Eq. (4.26), the work
will be well distributed, and no communication is needed. Therefore, Eq. (4.27) is only invoked,
if a local storage is prohibited, and only if necessary, the code will switch to use Eq. (4.27).

4.3.2 The five schemes for evaluating the CCSD vector equations

The two strategies discussed previously, i.e. the AO integral–direct strategy, and the MO–direct
strategy are implemented in an adaptive hierarchy in the degree of memory distribution. The
quantities which are worth distributing are the integrals g̃, the doubles amplitudes t and the
doubles residual vectors Ω of sizes V 2O2. It is necessary to store at least three amplitude
and residual vectors of the previous iterations for the CROP solver, and therefore the CROP
solver is implemented completely in terms of parallel distributed tensors, cf. Chapters 2 and 3.
Therefore, we do not need to take these vectors into account in the current section. An overview
over the implemented CCSD schemes is given in Table 4.1

Schemes 5 and 4 use the MO–direct strategy, with the difference that in scheme 5 all
computational nodes have the full gpqrs (with the index restrictions discussed in Section 4.2.2)
available. In contrast, scheme 4 takes advantage of the parallel distributed tensors introduced
in Chapter 3 to distribute the gpqrs among all computational nodes and therefore remote up-
dates are necessary during the transformation to the MO basis. During the iterations, to setup
the residual vector each node will only work on the locally stored parts of the gpqrs integral
and finally, in order to obtain the residual contribution, the intermediates are added by call-
ing MPI REDUCE (i.e. carrying out the summations over Np and Nr). For all the sixth order
contractions outside the MO–integral loop we use Eq. (4.26) for the work distribution.

Schemes 3, 2 and 1 are based on the AO–integral direct strategy and therefore, besides the
necessary work space, the most memory intensive quantities will be tabij , Ωaibj within the residual
routine (they are distributed in the solver) and the integrals g̃iajb, g̃aijb and g̃abij . For scheme
3 all of these quantities are kept in local memory and no communication will be involved for
constructing them from a given AO batch, except in the end when the final intermediates will
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be obtained by summing over the contributions of all nodes (i.e. summing over all Np Nr) by
calling MPI ALLREDUCE. In this way, all the nodes will have the full information necessary for
the construction of the ΩB2, ΩC2, ΩD2 and ΩE2 terms, and the work distribution is obtained
by using the strategy given in Eq. (4.26). In scheme 2 only the integrals g̃iajb, g̃aijb and g̃abij
will be distributed throughout the integral–direct loop, which makes remote updates using
MPI ACCUMULATE necessary (see next subsection and Appendix A). After the integral–direct
loop, however, the integrals may be stored locally, since the overall memory requirements are
lower, thus we use Eq. (4.26) to obtain work distribution among the nodes. For scheme 1 all
the integrals, amplitudes and residual vectors are stored in PDM throughout the evaluation of
the vector function. The main memory requirement for scheme 1 is given by one working array,
which has the size V 2O2 due to the way the remote updates are currently implemented. For
the construction of the ΩB2, ΩC2, ΩD2 and ΩE2 terms, the strategy given in Eq. (4.27) is used.

The five schemes, therefore form a hierarchy in their local memory requirements (see Ta-
ble 4.1) and also they form a hierarchy in computational efficiency, as will be shown in Sec-
tion 4.4, such that it is simple to choose a scheme for a given molecular system based on the
memory requirements. We may therefore choose to use the scheme with the highest memory
requirements possible for a given molecular system to obtain reasonable efficiency when solving
the CCSD equations for the system. Note that schemes 1 and 2 (4) cannot be run on a single
node, since they (it) will collapse to scheme 3 (5) since no memory distribution is possible.

Remote updates in the integral direct loop

In order to further avoid storage of big quantities throughout the memory–intensive integral
direct loop, we (currently) allow for the storage of one V 2O2 quantity in local memory, and
perform remote updates using MPI ACCUMULATE. This will be exemplified with a pseudo code
for the addition of the integral contribution of ΩA2, where NA, NI , NB and NJ are the number
of segments in the respective dimensions.

Algorithm 4: Remote update of the integral g̃aibj

1: dor̄ = 1, Nr

2: do p̄ = 1,Np

3: get gp̄qr̄s
4: transform to g̃aibj
5: do A = 1, NA

6: do I = 1, NI

7: do B = 1, NB

8: do J = 1, NJ

9: extract g̃AIBJ
10: MPI ACCUMULATE(g̃AIBJ)

An alternative, better way, would be to transform only to segments of the next tile to
update and use multiple buffering in order to efficiently have concurrent communication and
computation. In a future implementation, this, or a similar technique will remove the need for
the V 2O2 working array in the CCSD residual algorithm.
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Table 4.2: Example systems to demonstrate the scalability of the presented CCSD algorithm, nnodes is
the number of nodes used in the calculation.

Identifier System basis set M V O

Ia C2H5COOH cc-pVDZ 100 80 20
Ib C2H5COOH cc-pVTZ 234 214 20
Ic C2H5COOH cc-pVQZ 455 435 20
II C6H13COOH cc-pVQZ 915 879 36
III C10H21COOH cc-pVTZ 698 646 52

4.4 Numerical results

In this section we report a series of calculations on a set of organic acids of different lengths
using Dunning’s cc-pVTZ and cc-pVQZ basis sets, where all calculations have been carried out
on Titan and Chester (see page 133), at Oak Ridge National Laboratory, without using the ac-
celerators present on each node. With the calculations presented in this chapter we demonstrate
the scalability and adaptivity of the presented algorithm. Furthermore, we demonstrate that
despite the fact that the algorithm does not use any local disk or file system storage, and despite
the fact that there are only 32GB of main memory per node, it is possible to carry out rather
large CCSD calculations. It will also be shown that an algorithm based on MPI ACCUMULATE

can achieve reasonable performance if the necessary hard- and software support is present.

The calculations presented here are based on a test set of simple carbonic acids, i.e. propionic
acid (I), enanthic acid (II), and undecylic acid (III), and the basis sets cc-pVDZ, cc-pVTZ and
cc-pVQZ (see Table 4.2) which allow for systematically increasing the test system and thereby
allow for an assessment of the scaling behavior of the algorithm. While the strong scaling
behavior of the algorithm may be assessed using any of the shown systems, the weak scaling
has not been assessed. The CCSD algorithm consists of a number of steps with different scaling
behaviors, where 1

4M
2V 2O2 is the dominating one in the limit of large molecules, but for test

systems I -III, other steps may dominate the process, rendering the evaluation of the weak
scaling rather cumbersome.

We begin by comparing the AO and MO direct approaches in their different degrees of
memory parallelization, schemes 1 − 5, as introduced in Section 4.3. We have chosen system
Ia, which was small enough to be run on a single node with schemes 3 and 5. In Figure 4.1
we compare the average time for one iteration using any of the schemes 1 (blue),2 (green),
3 (gray), 4 (purple), and 5 (yellow). As expected, the MO–direct approach is faster than
the AO–direct approach, and the more distributed the data is, the slower the algorithm, even
though the differences are not prominent. That the distributed scheme 4 is faster than the local
scheme 5 for the MO–direct algorithm may be a result of the anyways rather short timings.
The MO–direct algorithm does not have a speedup, when using 2 nodes instead of 1. This may
be attributed to a non–ideal setup concerning the communication using these schemes which
becomes a bottleneck for small calculations. The speedup, in general, is not ideal for any of
the schemes shown here, since the workload is rather low, considering that there are 8 floating
point units per node and up to 16 nodes. In order to be able to better quantify the difference
between the schemes, larger systems are necessary, since the computational timings for system
Ia are too low to be accurate. Since only schemes 1− 3 are ported in a reliable way to Titan,
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Figure 4.1: Comparison of the timings of schemes 1−5 for test system Ib, 1 (blue),2 (green), 3 (gray),
4 (purple), and 5 (yellow)
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yet, we will reference schemes 4 and 5 only if data were obtainable.

In Figure 4.2 and Figure 4.3 we present timing and speedup data for systems Ib and Ic,
respectively. When comparing the timing for scheme 3 for a single node the time increases by
a factor of 38.0 when moving from system Ia to Ib and 15.2 when moving from system Ib to
Ic. When calculating the respective scaling factors for these steps using 1

4M
2V 2O2 we obtain

9.8 and 3.9, respectively. This demonstrates that the algorithm is not dominated by the most
expensive term at the considered system sizes, and this is the reason for why schemes 4 and 5
are significantly faster for all the considered systems despite the increased scaling.

Furthermore, it is reconfirmed from the timings in Figures 4.2a and 4.3a that a) the MO–
direct approach is about a factor 2-3 faster than the AO-direct approach, and b) that the memory
distribution slows down the code, now with more reliable timings. When calculating the speedup
for the individual schemes in Figures 4.2b and 4.3b for systems Ib and Ic, respectively, we used
the lowest number of nodes for a certain scheme as reference. The ideal speedup with respect
to that reference is given in red with different markers to make the curves distinguishable. The
scaling improves for the larger system, e.g. for scheme 3 and using 32 nodes the speedup is a
factor of 16 and 21 for systems Ib and Ic, respectively. Yet, any of the presented algorithms is
rather far from the ideal speedup for large node counts, as both, the work per node decreases,
while the associated communication effort increases. For scheme 5 and system Ib we observe
a super–linear speedup, resulting most probably from the memory distribution in the solver,
i.e. there is more memory available during the MO–direct loop and therefore fewer repetitions
associated with the calculation of the intermediates.

In Figure 4.4 we have given the timing and the speedup for the largest systems under
consideration in this study, i.e. systems II and III. For these systems, the one (necessary)
locally stored tensor occupies about 7.5 and 8.4 GB of local memory (of the 32 GB total on
one Titan node). We have used 64, 128, 256, 512 and 1024 (16, 32, 64, 128 and 256) nodes for
system II (III), where the timing and scaling develop as expected, when increasing the number
of nodes, until time for system II (III) is increased when using 1024 (256) instead of 512 (128)
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Figure 4.2: Comparison of the timings and speedups for schemes 1 (blue),2 (green), 3 (gray), 4 (purple),
and 5 (yellow), and test system Ib.
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(a) Time per iteration for system Ib and schemes
1− 5.
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(b) Scaling of the schemes 1 − 5 and system Ib.
The idealized speedup with 1 (2) node(s) as ref-
erence is given in red x (+) to compare with the
obtained speedups for schemes 3 and 5 (1,2 and
4).

Figure 4.3: Comparison of the timings and speedups for schemes 1 (blue),2 (green), 3 (gray), and 4
(purple, only time) and test system Ic.
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(a) Time per iteration for system Ic and schemes
1− 4. Note the logarithmic y-axis.
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(b) Scaling of the schemes 1 − 3 and system Ic.
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ence is given in red x (♦) to compare with the ob-
tained speedup for scheme(s) 3 (1 and 2). Scheme
4 is omitted for clarity.
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Figure 4.4: Comparison of the timings and speedups of scheme 1 for test systems II (black) and III
(yellow), demonstrating the strong scaling behavior of the CCSD algorithm up to 1024 nodes.
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(a) Time per iteration for systems II and II using
scheme 2
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(b) Scaling of scheme 1 for systems II and III.
The idealized speedup with 16 (64) node(s) as ref-
erence is given in red — (◦) to compare with the
speedups for systems II and III.

nodes. System III exhibits near perfect scaling, increasing the number of nodes from 16 to
128, indeed, the super linear speedup seen when using 32 and 64 nodes may be ascribed to the
surplus of memory available on a single node when distributing the large tensors. The decrease
of efficiency beyond 512 (128) nodes for system II (III) is an artifact of an automatic increase
in the number of batches Np and Nr which occurs if many more nodes than Np ·Nr are available.
This technique, which is designed for satisfying all nodes with enough work, introduces more
overhead, than can be compensated for by the amount of nodes used in the calculation for large
node counts. Yet, reducing that splitting will lead to an uneven distribution of work among the
nodes, and thus, may not remedy the problem.

4.5 Conclusion and outlook

In this section we have developed a strategy to tackle a broad variety of system sizes when
solving the CCSD amplitude equations in an optimal way, with algorithmic schemes that are
designed for a minimal memory footprint and absolutely no use of local disks. Because the
five schemes are almost hierarchical in the time–to–solution and (reciprocally) in memory use,
it is simple to select the scheme, which is the most suitable for the memory situation on a
given computer, and thus achieve a short time–to–solution. Because the algorithm is flexible,
it is ideally suited to be used in a fragment approach, like the DEC algorithm [38, 39, 42]. We
have demonstrated that the algorithm is fairly scalable, and that calculations on molecules with
about 900 basis functions are possible with as little as 32 GB of main memory per node. If
more memory is available, the application range of the algorithm is drastically increased [43].
We have furthermore identified memory and workload bottlenecks, which are to be removed in
a future implementation.
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Only recently we could run the larger calculations presented in this section due to the
many technical problems we have faced on Titan. A combination of a system update and
many technical workarounds finally made these large scale calculations possible. As a future
perspective we expect, that after removing more technical barriers, the current code should be
applicable for even larger molecular systems.



Appendix A

Technical appendix:

A.1 Technical notes for running the current CCSD code with
DMAPP and asynchronous progress.

In order to utilize the one–sided capabilities of the Titan machine in an optimal way, huge
memory pages of 2MB had to be used, furthermore, since LSDALTON uses dynamic memory
allocation and many allocation/deallocation cycles lead to a fragmentation of memory, a rather
large chunk of memory is allocated at application startup and used throughout the calculation
(based on an input keyword to LSDALTON). Because of the memory demands of a CCSD cal-
culation, and the calculation being rather floating–point intensive, the calculations were run with
8 threads, one per floating–point unit (which is achieved by setting export OMP_NUM_THREADS=8

and --cc 0,2,4,6,8,10,12,14,1,3,5,7,9,11,13 to aprun) and running with an additional
communication thread (-r 1 to aprun).

A note on MPI ACCUMULATE: MPI ACCUMULATE has the downside of not being implemented as
a real one–sided routine in most MPI implementations, which has lead application implemen-
tors to avoid this routine [36]. While this is true for most commodity clusters, larger clusters
nowadays feature Cray’s Distributed Memory APPlication (DMAPP) together with MPICH2,
which allows for a real one–sided MPI ACCUMULATE use when
export MPICH_RMA_OVER_DMAPP=1 is set at runtime. Furthermore, when used in connection
with export MPICH_NEMESIS_ASYNC_PROGRESS=1 (it is then necessary to use
export MPICH_MAX_THREAD_SAFETY=multiple at runtime) the application can still achieve rea-
sonable performance as demonstrated in the results section 4.4. In case DMAPP and MPICH2
are available, LSDALTON features some optimizations which may be switched on by setting
export LSMPI_ASYNC_PROGRESS=1 at runtime, like a dynamic job distribution scheme taking
advantage of advanced MPI3 features.
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Chapter 5

Application of the CCSD code: Interaction
energies

This chapter summarizes the work of article 3

5.1 Introduction

In biology, functional materials design, and many other disciplines of science, it is often of inter-
est how two molecules A and B interact. The interaction energy ∆EAB is used to characterize
the degree of the interaction. While this is a useful measure, it is often difficult to access experi-
mentally and therefore computational methods are often used to predict the interaction energies
instead. The interaction energy ∆EAB of two molecules A and B is defined as the energy dif-
ference of the combined system AB and the energy of the system, where A and B infinitely
far apart. With the standard atom centered basis sets used in most quantum chemistry pro-
grams, it is well–known that there is an error associated with the straightforward, uncorrected
(UC), calculation of these interaction energies, because the variational freedom of the combined
system is larger, than the variational freedom of the individual systems, (usually) leading to
interaction energies, which are too negative. In the literature this effect is known as the basis
set superposition error (BSSE) [44]. For truncated basis sets, the BSSE is usually corrected
for, by using the counterpoise (CP) approach by Boys and Bernardi [45], where the basis of the
combined system AB is used to calculate the individual energies of A and B. The difference
between the UC and the CP energies approaches zero when the basis set is increased and it
vanishes in the limit of a complete basis set (CBS). In the literature it has been extensively
discussed to which degree the CP approach is justified [46–58] and other methods for calculating
interaction energies have been developed, e.g., the virtual CP (VCP) approach [46, 47], scaled
CP corrections [59–61], the semi-empirical geometrical CP approach [62], symmetry-adapted
perturbation theory [63,64], the chemical Hamiltonian approach [65,66], the strictly monomer-
molecular orbital approach [67], and the constrained dimer function approach [68]. Despite this
manifold of alternatives, most applications continue to use the CP procedure, and therefore we
will not assess these alternatives in detail.

The same number of optimized parameters [43] (SNOOP) approach has recently been de-
veloped as an alternative to the UC and CP approaches. The SNOOP scheme was developed
with the focus on getting accurate interactions right without the necessity for extrapolation.
It is is based on imposing the same number of WF parameters on the system A + B (i.e. the
noninteracting monomers) as for the combined system AB. In Ref. 43, calculations were carried
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out using the CCSD algorithm of Chapter 4. Here, we give a short summary of the UC, CP
and SNOOP methods and reiterate briefly on the results presented in Ref. 43.

In Section 5.2, we summarize the UC, CP and SNOOP approaches for determining inter-
molecular interaction energies. Section 5.3 contains computational details, and UC, CP, and
SNOOP interaction energies at the MP2 and CCSD(T) levels for a selection of test molecules
are compared in Section 5.4. Finally, Section 5.5 contains some concluding remarks and per-
spectives.

5.2 Summary of the UC, CP and SNOOP approaches for cal-
culating interaction energies

For the two isolated monomers A and B with electronic energies EA and EB, the electronic
interaction energy of the AB dimer, ∆EAB, is defined as the difference between the total
electronic energy of AB, EAB, and the total electronic energy of the noninteracting monomers,
EA + EB, i.e.,

∆EAB = EAB − EA − EB, (5.1)

where, for simplicity, we have neglected the zero point vibrational energy and the geometry
relaxation of the monomer in the interacting system. Thus, the practical determination of
∆EAB involves three separate calculations – one for each of the AB, A, and B systems. If usual
atom-centered basis functions (atomic orbitals, AOs) are used on each monomer, obviously, the
AB calculation has AOs centered on all atoms of both systems A and B.

When the calculation of EA (EB) involves only AOs on monomer A (B) we will refer to
the resulting ∆EAB as the uncorrected interaction energy. In the following we will use curly
brackets to emphasize which basis set was used in each calculation. Thus, the UC interaction
energy may be defined as

∆Euc
AB = E

{AB}
AB − E{A}A − E{B}B . (5.2)

Similarly, we may write the interaction energy using the CP approach as

∆Ecp
AB = E

{AB}
AB − E{AB}A − E{AB}B , (5.3)

and the BSSE may be defined as the difference between ∆Euc
AB and ∆Ecp

AB. In practice, the CBS
result is usually somewhere between the ∆Euc

AB and ∆Ecp
AB energies obtained with truncated

basis sets. For variational WFs the energy of the monomers will be lowered in the CP approach

compared to the UC approach, and since the reference E
{AB}
AB is the same in both cases, the

usual situation is

∆Ecp
AB > ∆Ecbs

AB > ∆Euc
AB, (5.4)

which often is the case for non variational WFs, too. An example of this is the MP2/aug-
cc-pVTZ interaction energy of the water dimer, for which ∆Euc

AB = −8.14 mEh and ∆Ecp
AB =

−7.38 mEh, while the CBS estimate is ∆Ecbs
AB = −7.80 mEh. Thus, in a sense, the CP approach

“over–corrects” for the errors made in the UC approach.
As shown in Eq. (1.31) the total CC energy may be partitioned into a HF part and a

correlation part, and thus the interaction energy in Eq. (5.1) may be written as

∆EAB = ∆EAB,HF + ∆EAB,corr. (5.5)
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Figure 5.1: Schematic illustration of the HF optimizations for the interacting AB dimer and the
noninteracting A + B monomers using the UC, CP, and SNOOP approaches. The dimensions of the
κ rotation matrix are indicated as subscripts. OA and VA (OB and VB) refer to occupied and virtual
orbital spaces for monomer A (B). The arrows denote HF orbital optimizations, and grey-shaded orbital
spaces are not included in the HF optimizations.
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FIG. 1. Schematic illustration of the HF optimizations for the interacting AB dimer and the non-

interacting A + B monomers using the uncorrected, CP, and SNOOP approaches. The dimensions

of the  rotation matrix are indicated as subscripts. OA and VA (OB and VB) refer to occupied

and virtual orbital spaces for monomer A (B). The arrows denote HF orbital optimizations, and

grey-shaded orbital spaces are not included in the HF optimizations.

Eqs. (11) and (12) is that the variational freedom in the uncorrected/CP-corrected monomer

calculations is smaller/larger than in the dimer calculation. For a finite basis set the un-

corrected/CP monomer energies therefore tend to be too high/low compared to the dimer

energy, which explains the commonly observed ordering of interaction energies in Eq. (5).

7
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The optimization of the HF WF may be parameterized as in Eq. (1.14) where the number of
non–redundant parameters in is OV . We will in the following discussion explicitly distinguish
the origins of the orbitals, by giving them the subscript of the system they are associated with,
i.e. OA/VA (OB/VB) denotes the number of occupied/virtual orbitals associated with system A
(B), and we may write the dimer HF rotation matrix as exp(κOA+OB ,VA+VB ). The total number
of parameters in the calculation is therefore

PAB,HF = (OA +OB)(VA + VB) = OA(VA + VB) +OB(VA + VB). (5.6)

Figure 5.1 illustrates the HF optimizations for the interacting AB dimer and for the UC and
CP monomer calculations. We use calligraphic letters to denote orbital spaces (e.g. OA), while
capital roman letters (e.g. OA) are used for denoting the corresponding dimensions. Figure 5.1
shows that the sum of the number of κ parameters in the UC/CP-corrected HF monomer
calculations are smaller/larger than the number of parameters in the dimer calculation, i.e.,

P uc
A+B,HF = OAVA +OBVB, (5.7)

and

P cp
A+B,HF = OA(VA + VB +OB) +OB(VA + VB +OA). (5.8)

Equations (5.7) and (5.8) refer to the number of HF parameters, but similar equations can be
derived for the number of CC amplitudes, see Ref. 43. One interpretation of Eqs. (5.7) and (5.8)
is that the variational freedom in the UC/CP-corrected monomer calculations is smaller/larger
than in the dimer calculation. For a finite basis set the UC/CP monomer energies therefore
tend to be too high/low compared to the dimer energy, which explains the commonly observed
ordering of interaction energies in Eq. (5.4).

For a better parameter balance between the noninteracting A + B and the interacting AB
calculations the SNOOP scheme enforces that the number of optimized parameters in the A+B
calculations be equal to the number of optimized parameters in the AB calculation. From
Eq. (5.6), we see that this may be achieved by choosing the virtual space of each monomer
calculation to be of dimension VA + VB as illustrated in Figure 5.1 (bottom). Thus, it follows
that

P snoop
A+B,HF = OA(VA + VB) +OB(VA + VB). (5.9)

The optimized orbital spaces of the SNOOP monomer HF calculations are then used in subse-
quent correlated calculations.

It was demonstrated in the Appendix of Ref. 43 that Eqs. (5.7), (5.8), and (5.9) effectively
hold also for the CC amplitudes and thus for all parameters entering the CC calculations. We
may therefore, in general, write

P uc
A+B < P snoop

A+B = PAB < P cp
A+B. (5.10)

and for strictly variational WFs we thus conclude that

Euc
A + Euc

B ≥ Esnoop
A + Esnoop

B ≥ Ecp
A + Ecp

B , (5.11)

where the equality signs hold in the CBS limit. For all considered examples in this section, this
ordering is also observed for non–variational WFs. Since the same dimer energy EAB is used in
the three approaches, it follows from Eq. (5.1) that

∆Euc
AB ≤ ∆Esnoop

AB ≤ ∆Ecp
AB. (5.12)
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Figure 5.2: Energy diagram illustrating the relative positions of UC, SNOOP, and CP noninteracting
monomer A+B energies for the situation where ∆EAB < 0.
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Equations (5.11) and (5.12) are summarized in Figure 5.2 for the case where ∆EAB < 0. For the
common situation in Eq. (5.4), in which the UC interaction energies are too attractive, while
the CP-corrected interaction energies are not attractive enough, Figure 5.2 indicates that the
SNOOP approach might provide a better balance between the A+B and the AB calculations.
A detailed description of the SNOOP algorithm is given in the chart on page 58.

5.3 Computational details

We consider a test set consisting of the 8 molecular dimers in Figure 5.3, i.e., the water dimer,
the hydrogen fluoride dimer, the formamide dimer, the methane dimer, the benzene–hydrogen
sulfide complex, and the sandwich (S), T-shaped, and parallel displaced (PD) conformations
of the benzene dimer. This test set ranges from molecular systems where the interactions are
dominated by hydrogen bonds (e.g. the water dimer) to systems where dispersion forces are
dominating (e.g. the methane dimer).

All geometries are equilibrium structures, and the monomer geometries are the same for the
isolated monomers and for the dimer complexes. The reference interaction energies are presented
in Table 5.1. For details on the molecular geometries and reference interaction energies see
Ref. 43.

We have carried out MP2 and CCSD(T) calculations using the aug-cc-pVXZ (X=D,T,Q)
basis sets [28]. The HF gradient norm was converged to 10−6 a.u., and the CCSD residual
norm was converged to 10−9 a.u. All calculations used the frozen core approximation and were
carried out using with the CCSD implementation described in Chapter 4, implemented in the
LSDALTON program [29]. For the complexes containing benzene the diffuse functions were
omitted on hydrogen atoms. The (T)/aug-cc-pVQZ calculations were too large to be carried
out for the benzene dimers with our present code (30 occupied and 1278 virtual orbitals).
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(H2O)2 (HF)2 (HCONH2)2

(C6H6)2(S) (C6H6)2(T)(C6H6)2(PD)

(CH4)2

(H2S)(C6H6)

Figure 5.3: Molecular dimers considered in this study.

1. Carry out UC HF optimizations for systems A and B to obtain occupied and virtual
spaces OA and VA for monomer A, and OB and VB for monomer B.

2. For system A, orthogonalize VB orbitals against the OA and VA orbitals to generate
orthogonalized V⊥B orbitals, and carry out HF optimization in the {OA,VA,V⊥B} space
to calculate Esnoop

A,HF :

VA VB

OA OB
ortho-!
gonalize
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OA OB
HF!

optim. OB

V 0
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O0
A
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B V?0

B

3. Carry out the correlated calculation for system A using optimized occupied O′A and
virtual V ′A ∪ V⊥′B orbitals to determine Esnoop

A,corr.

4. Calculate the SNOOP CC energy for monomer A:

Esnoop
A = Esnoop

A,HF + Esnoop
A,corr. (5.13)

5. Carry out the equivalents of steps 2, 3, and 4 for system B.

6. Carry out conventional AB dimer calculation (HF+correlation) in the total orbital
space to determine the dimer energy EAB.

7. Calculate the SNOOP interaction energy:

∆Esnoop
AB = EAB − Esnoop

A − Esnoop
B . (5.14)
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Table 5.1: Estimated MP2 and CCSD(T) CBS interaction energies (mEh) for the molecular dimers in
Figure 5.3.

System MP2 CCSD(T)

(H2O)2 -7.80 -7.91
(HF)2 -7.15 -7.35

(HCONH2)2 -25.1 -25.4
(CH4)2 -0.80 -0.86

(C6H6)2 (S) -5.50 -2.63
(C6H6)2 (PD) -7.82 -4.25
(C6H6)2 (T) -5.77 -4.29
(H2S)(C6H6) -5.76 -4.51

5.4 Results

5.4.1 Comparison of the UC, CP-corrected, and SNOOP schemes

For a given basis set, we consider the relative error of the interaction energy, ∆,

∆ =
∆Emethod −∆Ecbs

|∆Ecbs| · 100%, (5.15)

where ∆Emethod is either the UC (Eq. (5.2)), the CP-corrected (Eq. (5.3)), or the SNOOP
(Eq. (5.14)) interaction energy, and ∆Ecbs is the interaction energy at the estimated CBS limit
(Table 5.1). For the MP2 and CCSD(T) models, ∆Ecbs < 0 for all molecules in Figure 5.3, and
a negative (positive) ∆ thus implies that the calculated interaction energy is too attractive (not
attractive enough). We also consider the mean error, ∆̄, the absolute mean error, ∆̄abs, the
standard deviation, σ, and the maximum absolute error, ∆max. The statistical error measures
are presented in Tables 5.2 and 5.3, respectively, while the relative MP2 and CCSD(T) errors
for the individual molecular systems are given in Tables 5.4 and 5.5, respectively. The normal
distribution of the MP2 errors is given in Figure 5.4.

With the exception of some of the CP σ values, the statistical measures in Tables 5.2 and 5.3
are significantly smaller for the SNOOP scheme than for the two other schemes for both the
MP2 and CCSD(T) models and regardless of the basis set, see also Figure 5.4. These findings
confirm that it is important to use a balanced number of parameters in the monomer and dimer
calculations. The relatively small σ values for the CP scheme in Tables 5.2 and 5.3 show that
the CP errors are quite systematic (see Section 5.4.2).

Tables 5.4 and 5.5 collectively show that the UC approach yields interactions energies that
are too attractive (∆ < 0) for all dimers of the test set, while the corresponding CP values are not
attractive enough (∆ > 0) in agreement with Eq. (5.4). The SNOOP errors for the individual
molecules are in all cases – with the exception of (C6H6)2 (S)/aug-cc-pVTZ – smaller than the
corresponding CP errors. Smaller errors are in some cases observed for the UC approach, but
this approach suffers from large errors for, e.g., the benzene and methane dimers, illustrating
that the UC interaction energies are quite unreliable. In accordance with the monomer energy
ordering in Figure 5.2 the SNOOP scheme always yields errors that are sandwiched between the
UC and CP-corrected errors, which is why the SNOOP in general leads to smaller errors than
the UC and CP approaches. These findings in connection with Figure 5.2 also explain why an
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Table 5.2: Statistical errors for relative MP2 interaction energies (%) for the set of test molecules.

Measure Basis Uncorrected CP SNOOP

∆̄ aug-cc-pVDZ -30.0 16.6 4.4
aug-cc-pVTZ -13.1 6.6 1.2
aug-cc-pVQZ -5.2 2.7 1.1

∆̄abs aug-cc-pVDZ 30.0 16.6 4.5
aug-cc-pVTZ 13.1 6.6 1.8
aug-cc-pVQZ 5.2 2.7 1.1

σ aug-cc-pVDZ 30.4 4.3 4.2
aug-cc-pVTZ 9.5 1.1 2.0
aug-cc-pVQZ 3.0 0.6 0.7

∆max aug-cc-pVDZ 83.8 21.7 11.3
aug-cc-pVTZ 25.1 8.0 3.4
aug-cc-pVQZ 8.6 3.6 2.4

Table 5.3: Statistical errors for relative CCSD(T) interaction energies (%) for the set of test molecules.

Measure Basis Uncorrected CP SNOOP

∆̄ aug-cc-pVDZ -40.2 17.7 2.1
aug-cc-pVTZ -17.7 6.5 0.1

∆̄abs aug-cc-pVDZ 40.2 17.7 7.1
aug-cc-pVTZ 17.7 6.5 3.1

σ aug-cc-pVDZ 38.9 4.4 8.3
aug-cc-pVTZ 16.4 1.8 3.8

∆max aug-cc-pVDZ 85.1 25.0 13.6
aug-cc-pVTZ 46.8 10.4 5.4

empirical scaling of the CP correction in many cases gives improved results over the standard
CP approach [59–61]. Both positive and negative SNOOP errors are observed. We elaborate
on this issue in Section 5.4.2.

5.4.2 Convergence with basis set and extrapolation

In Ref. 43 it was discussed why the SNOOP scheme is not suitable for basis set extrapolations,
e.g., the X−3 extrapolation scheme [69] of Halkier et al. Here we reiterate on the numerical
results, which support that SNOOP interaction energies obtained using a given basis are of
similar quality as those determined by basis set extrapolation of CP results obtained at a
similar computational cost.

To analyze the components of the interaction energy in greater detail, we separate the total
interaction energy errors into HF and correlation contributions. For brevity, we limit the analysis
to the water and the PD benzene dimers as representative examples of molecular complexes
dominated by hydrogen bonding and dispersion interactions, respectively. Furthermore, we
consider only MP2 results since the CCSD(T) results are similar.

The results are presented in Table 5.7. We recognize that the correlation errors dominate
over the HF errors in most cases, and the general superiority of the SNOOP scheme over the
UC and CP approaches is caused primarily by the comparatively small errors in the correlation
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Table 5.4: Relative errors ∆ (%) of UC, CP-corrected, and SNOOP MP2 interaction energies for the
test molecules.

System Basis Uncorrected CP SNOOP

(H2O)2 aug-cc-pVDZ -5.3 12.2 6.6
aug-cc-pVTZ -4.3 5.5 2.6
aug-cc-pVQZ -2.9 2.0 1.1

(HF)2 aug-cc-pVDZ -3.1 11.4 7.0
aug-cc-pVTZ -4.5 5.8 2.7
aug-cc-pVQZ -3.7 1.8 0.7

(HCONH2)2 aug-cc-pVDZ -1.9 12.0 7.2
aug-cc-pVTZ -2.6 5.2 3.4
aug-cc-pVQZ -1.4 2.3 1.8

(H2S)(C6H6) aug-cc-pVDZ -5.2 19.8 11.3
aug-cc-pVTZ -6.0 8.0 3.4
aug-cc-pVQZ -2.1 3.6 2.4

(C6H6)2 (S) aug-cc-pVDZ -47.4 18.0 2.6
aug-cc-pVTZ -25.1 6.9 -0.4
aug-cc-pVQZ -8.3 3.1 0.5

(C6H6)2 (T) aug-cc-pVDZ -46.2 21.4 1.1
aug-cc-pVTZ -20.1 7.9 -0.1
aug-cc-pVQZ -7.2 3.4 1.4

(C6H6)2 (PD) aug-cc-pVDZ -46.8 16.3 -0.3
aug-cc-pVTZ -20.9 6.5 -1.2
aug-cc-pVQZ -7.2 2.9 0.9

(CH4)2 aug-cc-pVDZ -83.8 21.7 -0.2
aug-cc-pVTZ -21.1 6.9 -0.5
aug-cc-pVQZ -8.6 2.7 0.4

Figure 5.4: Normal distributions of the MP2 errors for UC, CP-corrected, and SNOOP interaction
energies for the aug-cc-pVDZ (bottom), aug-cc-pVTZ (middle), and aug-cc-pVQZ (top) basis sets.
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Table 5.5: Relative errors ∆ (%) of UC, CP-corrected, and SNOOP CCSD(T) interaction energies for
the test molecules.

System Basis Uncorrected CP SNOOP

(H2O)2 aug-cc-pVDZ -4.8 13.9 7.8
aug-cc-pVTZ -3.9 5.8 2.9
aug-cc-pVQZ -1.9 2.1 1.4

(HF)2 aug-cc-pVDZ -3.0 13.2 8.1
aug-cc-pVTZ -4.3 6.4 3.0
aug-cc-pVQZ -2.8 2.1 1.1

(HCONH2)2 aug-cc-pVDZ -2.3 12.2 7.1
aug-cc-pVTZ -3.3 4.2 2.4
aug-cc-pVQZ -1.9 1.0 0.6

(H2S)(C6H6) aug-cc-pVDZ -8.5 25.0 13.6
aug-cc-pVTZ -7.1 10.4 4.5
aug-cc-pVQZ -0.9 4.8 3.6

(C6H6)2 (S) aug-cc-pVDZ -85.1 20.3 -7.0
aug-cc-pVTZ -46.8 5.1 -5.4

(C6H6)2 (T) aug-cc-pVDZ -58.1 17.5 -3.2
aug-cc-pVTZ -22.4 7.1 -1.5

(C6H6)2 (PD) aug-cc-pVDZ -83.6 18.5 -9.6
aug-cc-pVTZ -35.6 6.8 -5.1

(CH4)2 aug-cc-pVDZ -76.4 20.6 -0.4
aug-cc-pVTZ -18.2 6.2 -0.3
aug-cc-pVQZ -5.4 2.6 1.0
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Table 5.6: Statistical errors (%) for SNOOP/aug-cc-pVTZ and extrapolated DZ-TZ CP interaction
energies where the latter were obtained using the X−3 extrapolation scheme [69].

Model Scheme ∆̄ ∆̄abs σ ∆max

MP2 SNOOP (TZ) 1.2 1.8 2.0 3.4
CP (DZ-TZ) 2.1 2.1 1.3 3.7

CCSD(T) SNOOP (TZ) 0.1 3.1 3.8 5.4
CP (DZ-TZ) 1.7 1.8 1.2 3.5

part of the SNOOP interaction energy. In addition, the extraordinarily small SNOOP error for
the PD benzene dimer using the aug-cc-pVDZ basis is seen to result in part from a fortuitous
cancellation of a negative HF error and a positive correlation error.

From Table 5.7 it is clear that the SNOOP interaction energies oscillate slightly when the
basis set is increased, as illustrated by the convergence of the HF contribution for (H2O)2 and
the correlation contribution for (C6H6)2 (PD). On the other hand, the CP interaction energies
display a stable convergence with basis set for the HF as well as the correlation contribution.
CP interaction energies obtained with basis sets of increasing cardinal numbers can therefore
by used to extrapolate the interaction energy to the CBS limit [69], while such extrapolations
would be quite unstable for the SNOOP scheme.

It is explained in detail in Ref [43], why the SNOOP scheme is not suited for the extrap-
olation with the basis set, and we will not go into that level of detail here. We will rather
continue with pursuing the very relevant question of whether the SNOOP interaction energy
calculated with a given basis set like aug-cc-pVTZ is closer to the CBS value than the cor-
responding CP interaction energy obtained by extrapolating aug-cc-pVDZ and aug-cc-pVTZ
results (henceforth referred to as DZ-TZ extrapolation). These two approaches have roughly
the same computational cost, since an aug-cc-pVDZ calculation is relatively inexpensive com-
pared to an aug-cc-pVTZ calculation, and since the SNOOP and CP calculations using the
aug-cc-pVTZ basis cost roughly the same.

Table 5.6 shows that the SNOOP/aug-cc-pVTZ interaction energies are of similar quality
as the extrapolated CP interaction energies. The SNOOP approach is therefore an attractive
alternative to extrapolating CP interaction energies. For application purposes it may be advan-
tageous to use both approaches and compare the results to validate the interaction energy of
interest. For example, a large difference between SNOOP/TZ results and extrapolated CP/DZ-
TZ results would be a strong indication that it is necessary to increase the basis set to obtain
a reliable interaction energy.

Finally, we note that most of the reference data in Table 5.1 are based on TZ-QZ extrapola-
tions of CP interaction energies. However, a generalization of the results in Table 5.6 to higher
cardinal numbers might indicate that the TZ-QZ extrapolated CP interaction energies in fact
contain errors of the same magnitude as the SNOOP/aug-cc-pVQZ results. It is thus possible
that the SNOOP/aug-cc-pVQZ errors in Tables 5.4 and 5.5 in reality reflect the accuracy of the
reference data and not the inherent accuracy.
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Table 5.7: Relative interaction energy errors ∆ (%) for UC, CP-corrected, and SNOOP MP2 interaction
energies partitioned into HF and correlation contributions for the water dimer and the PD benzene dimer.

System Method Basis Hartree–Fock Correlation Total

(H2O)2 Uncorrected aug-cc-pVDZ -4.6 -0.7 -5.3
aug-cc-pVTZ -0.8 -3.5 -4.3
aug-cc-pVQZ -0.6 -2.2 -2.9

CP aug-cc-pVDZ 0.5 11.7 12.2
aug-cc-pVTZ 0.8 4.7 5.5
aug-cc-pVQZ 0.0 2.0 2.0

SNOOP aug-cc-pVDZ -0.7 7.3 6.6
aug-cc-pVTZ 0.5 2.2 2.6
aug-cc-pVQZ -0.1 1.2 1.1

(C6H6)2 (PD) Uncorrected aug-cc-pVDZ -20.0 -26.8 -46.8
aug-cc-pVTZ -4.6 -16.3 -20.9
aug-cc-pVQZ -1.2 -6.0 -7.2

CP aug-cc-pVDZ -0.1 16.4 16.3
aug-cc-pVTZ 0.0 6.4 6.5
aug-cc-pVQZ 0.0 2.9 2.9

SNOOP aug-cc-pVDZ -5.8 5.5 -0.3
aug-cc-pVTZ -1.1 -0.1 -1.2
aug-cc-pVQZ -0.1 1.0 0.9

5.5 Conclusion and perspectives

We have presented the calculations, which were used to back up the development of the SNOOP
scheme for the calculation of intermolecular interaction energies in Ref. [43]. All these calcula-
tions employed the algorithm described in Chapter 4

Numerical results for the aug-cc-pVXZ (X=D,T,Q) basis sets show that the SNOOP scheme
which, per construction, is sandwiched between the UC and CP approaches, outperforms both
of them for the calculation of MP2 and CCSD(T) interaction energies for a selection of test
molecules, indicating that the parameter balance is indeed very important for practical calcu-
lations.

Furthermore, SNOOP interaction energies calculated using a given basis are of similar qual-
ity as those determined by basis set extrapolation of CP results obtained at a similar compu-
tational cost. The SNOOP approach is therefore an attractive alternative to extrapolating CP
interaction energies. For application purposes, it may be particularly advantageous to use both
approaches and compare the results in order to validate the interaction energy of interest.
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Introduction

Highly accurate calculations of molecular energies and properties have been feasible for many
years using the systematically improvable coupled cluster (CC) hierarchy of methods – MP2
(second order Møller-Plesset perturbation theory) [11], CCSD (coupled-cluster with singles and
doubles excitations) [12], CCSD(T) (coupled-cluster with single and double excitations and an
approximate treatment of triple excitations) [13], CCSDT (coupled-cluster with singles, doubles
and triples excitations) [14], etc. In conventional implementations the computational scaling of
this hierarchy of models is N5, N6, N7, N8, etc. where N is a measure of the size of the system.
While the CC hierarchy can routinely be used to calculate molecular energies and properties
within accuracies that challenge modern experiments, the CC methods have in general been
restricted to relatively small molecules due to their inherent scaling wall. With the growing
capabilities of experimental methods and advances in life and material sciences to address ever
more complex chemical systems, the need for highly accurate electronic structure calculations
for large molecules is growing rapidly.

The grotesque scaling problems of the CC methods is a direct consequence of the nonlocal
nature of the conventionally used canonical Hartree-Fock (HF) orbitals which was realized
early [70], and it was recognized that the use of local orbitals would allow for an accurate
linear–scaling description of the electronic correlation effects. Local correlation methods were
pioneered by Pulay [70] and an early prominent contribution is the local coupled cluster (LCC)
method of Werner and coworkers [71–74]. Many other local CC methods have been proposed,
e.g. the atomic orbital-based CC, the natural linear scaling approach, the cluster-in-a-molecule
approach, the divide-and-conquer approach, the fragment molecular orbital approach and the
incremental scheme. In this existing plethora of local CC methods [75–97] ad hoc approximations
have often been introduced, for example by assigning fixed virtual correlating orbital spaces to
local occupied orbitals, or by a physical fragmentation of the molecule. These approximations
make the precision of a local correlated calculation, compared to a standard calculation, unclear.

In the standard CC methods the precision of a calculation is determined by the residual
norm threshold for the cluster amplitude equations (see Part I). The precision is thus defined
prior to a calculation. This a priori knowledge of the precision is an important feature and
one of the reasons for the success of CC calculations on small molecular systems. In the
recently introduced divide-expand-consolidate (DEC) [38,39,98] local CC method the precision
is similarly defined prior to a calculation. In the DEC method a calculation on a full molecular
system is divided into a sequence of single fragment and pair fragment calculations referencing
small parts of the orbital space of the full molecular system and the precision is defined by the
fragment optimization threshold (FOT) that is imposed on the fragment energy calculations.
The FOT identifies the orbital spaces where the cluster amplitude equations have to be solved
to give the fragment energies to the desired precision. The FOT based error control at the single
fragment level ultimately leads to an error in the total correlation energy, which is determined
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by the FOT. The recently developed local orthogonal orbitals for both the occupied and virtual
orbital spaces [99–101] constitute the foundation for the Divide-Expand-Consolidate DEC–CC
method. In this part of the present work, all quantities are therefore given in this set of local
orbitals, unless stated otherwise.

We will begin this second part with Chapter 6, where we will describe how the orbital spaces
for the single fragment calculations may be determined in MP2, CCSD and CCSD(T) calcula-
tions to obtain the final correlation energy to within a predefined precision. In Chapter 7, we
will refactor the DEC algorithm for massively parallel execution and demonstrate the overall
scalability of the algorithm for MP2 and CCSD(T) calculations and in Chapter 8 we will in-
vestigate the possibility of using the pair–natural orbital approach in a DEC–CCSD context in
order to reduce the cost of the overall calculation.



Chapter 6

A locality analysis of the DEC–CCSD(T)
method

This chapter summarizes the work of articles 4 and 5

Introduction

DEC is a local correlation method where the inherent locality of the electron correlation problem
is efficiently exploited to express the correlated wave function calculation on the full molecular
system in terms of many small and independent fragment calculations utilizing subsets of the
total orbital space. Importantly, the local orbital spaces employed in the fragment calculations
may be determined in a black box manner during the calculation to ensure that the calculated
properties are determined to a predefined precision compared to a conventional calculation.
A DEC calculation may be described both in terms of an occupied and a virtual partitioning
of the correlation energy. Using these different partitioning schemes, it is possible to validate
the calculated correlation energy using internal consistency checks and to exploit locality when
evaluating molecular properties [38,102].

We have previously carried out a locality analysis for the MP2 and CCSD equations in terms
of local orbitals using the occupied partitioning scheme [39] which demonstrates how orbital
spaces may be selected for evaluating the single fragment energies. Here, we simplify and gener-
alize this analysis to include the virtual space partitioning scheme. The connection between the
single fragment energy contributions and the selected orbital spaces is also examined. For MP2,
orbital space extensions arise solely due to a non–vanishing Fock matrix coupling mechanism,
while for CCSD orbital space extensions may additionally occur via a mechanism involving
long–range interactions between charge distributions, and a mechanism describing long–range
polarization effects.

In Section 6.1 we summarize the DEC algorithm, and in Section 6.2 we describe how orbital
spaces propagate in an iterative algorithm when the MP2 and CCSD amplitude equations are
solved and identify the structure of the orbital spaces that have to be used for evaluating
the single fragment energies. In Section 6.3 we use this information to develop the practical
algorithm that may be used to determine the single fragment energies to the FOT precision.
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Figure 6.1: All numerical illustrations in Sections 6.1 and 6.2 refer to this simple test system (lignoceric
acid, 6-31G basis), unless stated otherwise. The atomic site P under consideration is the protonated
oxygen atom, and the radius RP defines which orbitals are included in the [P ] = [P ] ∪ [P ] space.

P

[P]
R
P

32 Å

6.1 The DEC algorithm summarized

In this subsection we shortly summarize the DEC–CC method with emphasis on giving the
background that is required for determining the orbital spaces where the cluster amplitude
equations have to be solved to give the single fragment energies to a predefined tolerance, the
FOT.

6.1.1 Molecular integrals in a local orbital basis

The CC correlation energy for a closed–shell system may be expressed as given in Eq. (1.33),
where, for a set of local HF orbitals, each orbital may be assigned to a site P,Q, . . . . The
generic term “site” may stand for, e.g., an orbital site, an atomic site, or a molecular site, in the
following analysis, where the locality arguments will hold, irrespective of the choice of site. In
practice, however, atomic sites have proven to be a solid choice. The set of occupied (virtual)
orbitals assigned to site P will be denoted P (P ), and occasionally we will use P as P = P ∪P ,
where the meaning of P will be clear from the context. For local orbitals a charge distribution
ωpq = φpφq is negligible if the MOs φp and φq are well separated in space. Therefore, only when
ωia and ωjb are both non–negligible the integral giajb is non–negligible. Thus, if φi and φj are
both assigned to site P (i, j ∈ P ) then giajb is non–negligible and contributes to the energy
only if a, b ∈ [P ] where the bracket denotes the set of orbitals assigned to sites spatially close to
site P (including P itself). For compactness we will collectively refer to the occupied [P ] and
virtual [P ] orbital spaces as [P ] = [P ] ∪ [P ].

When using the locality of a MO basis, it is important that the MOs are represented by a
subset of the underlying AOs in order to obtain a method that is local in all respects. How the
truncation of the AO basis may be obtained when a set of local MOs is known is not the focus
of this analysis. For completeness, however, the practical procedure for the truncation of the
AO basis for a given fragment is summarized in Appendix B.1.

In this section and in Section 6.2 we present some illustrative numerical calculations, which
refer to the simple test system in Figure 6.1 where the HF orbitals have been localized using the
second power of the second moment localization function [100] and all CC equations have been
converged to a residual norm of 10−9 a.u. To illustrate the locality arguments in the current
and following discussions, we have plotted the decays of the absolute overlap (integrated over
all space), vpq =

∫
|φp||φq|dV (for p ∈ P and q ∈ [P ]), as via, vab and vij , in Figure 6.2a. The

absolute overlap integrals decay rapidly with radius RP as a manifestation of the locality of
the charge distributions ωpq. The Fock matrix elements Fpq (for p ∈ P and q ∈ [P ]) and the
two-electron integrals, giajb (for i, j, b ∈ P and a ∈ [P ]) are governed by charge distributions
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Figure 6.2: Distance decays for absolute overlap vpq =
∫
|φp||φq|dV , two-electron integral giajb, and

Fock matrix elements for the test system in Figure 6.1. The points shown are the maximum values of
consecutive 1.6 Å intervals.
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(a) Absolute overlap integrals via, vab and vij as a
measure for the locality.
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(b) The Fock matrix elements Fpq and two–electron
integrals giajb follow the decay behavior of vpq.

and therefore follow the same decay behavior as illustrated in Figure 6.2b.

6.1.2 Local formulation of the correlation energy expression

We now discuss how the locality of the orbitals may lead to a local description of the molecular
system. Replacing the summations in Eq. (1.33) by summations over sites and pairs of sites we
may write the correlation energy without introducing any approximations as

Excorr =
∑

P

[ExP +
∑

Q<P

ExPQ]. (6.1)

where x may, in a DEC context, either refer to the occupied (x = o) or the virtual (x = v)
partitioning scheme, which lead to alternative local descriptions of the correlation energy. In
the occupied partitioning scheme, the occupied single fragment energy EoP for site P may be
written as

Eo,fP =
∑

i,j∈P

∑

a,b

τabij Liajb, (6.2)

where τabij is defined in Eq. (1.34). Furthermore, using the short hand notation (
∑

a +
∑

b)
∑

c =∑
a

∑
c +
∑

b

∑
c, we may write the occupied pair interaction energy EoPQ between sites P and

Q as

Eo,fPQ =

(∑

i∈P
j∈Q

+
∑

j∈P
i∈Q

)∑

a,b

τabij Liajb. (6.3)

Similarly, the virtual single fragment energy EvP and pair interaction energy EvPQ may be cal-
culated according to

Ev,fP =
∑

a,b∈P

∑

i,j

τabij Liajb, (6.4)
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and

Ev,fPQ =

(∑

a∈P
b∈Q

+
∑

b∈P
a∈Q

)∑

i,j

τabij Liajb, (6.5)

where, for both the occupied and virtual partitioning schemes, amplitudes for the full molecular
system are required to evaluate the expressions of Eqs. (6.2)-(6.5). Therefore, also the amplitude
equations have to be solved for the full molecular system and no cost–reduction has been
obtained yet. Also, no approximations have been introduced in the correlation energy expression
in Eq. (6.1) if Eqs. (6.2)-(6.5) are used. For the sake of completeness we note that for MP2
calculations there exists a third partitioning scheme, called Lagrangian partitioning LMP2

corr [102].
It is practically a mixture of the occupied and virtual partitioning schemes and will therefore
not add a new perspective to this discussion, but we will use it in Chapter 7, where correlation
density matrices are calculated.

Following the locality considerations from Section 6.1.1, the integrals giajb may be neglected
(to the given precision) when the indices i and a (j and b) refer to spatially well separated
orbitals, and thus a truncation in the summations of Eqs. (6.2)-(6.5) may be introduced. Using
this restriction in the summations of the local occupied single fragment energy EoP and local
pair interaction energy EoPQ, we obtain

EoP =
∑

i,j∈P

∑

a,b∈[P ]

τabij Liajb, (6.6)

and

EoPQ =

(∑

i∈P
j∈Q

+
∑

j∈P
i∈Q

) ∑

a,b∈[P ]∪[Q]

τabij Liajb. (6.7)

For the virtual single fragment energy EvP and pair interaction energy EvPQ we obtain

EvP =
∑

a,b∈P

∑

i,j∈[P ]

τabij Liajb, (6.8)

and

EvPQ =

(∑

a∈P
b∈Q

+
∑

b∈P
a∈Q

) ∑

i,j∈[P ]∪[Q]

τabij Liajb, (6.9)

where all quantities entering the expressions of Eqs. (6.6)-(6.9) may be evaluated in a local
region around the involved sites P and Q and the whole algorithm asymptotically scales as
O(N2). If all orbitals are included in [P ] and [P ] for all sites P then Eqs. (6.6)-(6.9) and
Eqs. (6.2)-(6.5) are identical.

In order to arrive at a truly linear scaling algorithm, the second summation in Eq. (6.1) has
to be truncated. Since the pair fragment contributions ExPQ decay rapidly with the distance

between the sites P and Q as R−6
PQ (dispersion effects), a screening technique for discarding pair

fragment contributions (to the given precision) can be used, as will be detailed in Section 6.3.2.
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Figure 6.3: Schematic illustration where the upper and lower rows of squares symbolize the sets of
virtual and occupied orbitals assigned to a center, respectively. The orbitals assigned to site P are
shown as red squares. The space outside P where the integrals Liajb are non-negligible is shown in
magenta.
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(a) Schematic drawing of So,P
EOS

P

P

(b) Schematic drawing of Sv,P
EOS

The evaluation of the occupied single fragment energy EoP in Eq. (6.6) requires the ampli-
tudes of the occupied energy orbital space (EOS). To indicate that a four-index quantity, Xab

ij ,
is restricted to the occupied EOS, we write,

Xab
ij ∈ So,PEOS, (6.10)

where So,PEOS refers to a collection of four orbital indices with i, j ∈ P and a, b ∈ [P ]. We will use

the following compact notation for So,PEOS,

So,PEOS := P × P × [P ]× [P ] = P 2 × [P ]2. (6.11)

Similarly, EvP requires the amplitudes of the virtual EOS, which can be written as

Sv,PEOS := [P ]2 × P 2
. (6.12)

Both spaces So,PEOS and Sv,PEOS are depicted schematically in Figure 6.3. We henceforth use the

generic Sx,PEOS , ExP , and ExPQ to refer to one of the partitioning schemes. In order to obtain
the single fragment and pair interaction energies to the predefined precision, the amplitudes of
Sx,PEOS have to be known. When the amplitude equations are solved, the EOS amplitudes couple

to amplitudes outside of Sx,PEOS, and it is therefore necessary to take this coupling into account
and identifying the orbital space that is required to calculate ExP to a predefined precision. The
determination of EOS amplitudes to the requested precision is the subject of Section 6.2.

6.2 Orbital spaces in DEC–CC fragment energy calculations

In this section we will start out by summarizing how the single fragment MP2 energy is affected
when the orbital spaces are increased. We will then classify the additional mechanisms, when
stepwise moving from the initial MP2 model to CCD, CCSD and finally to CCSD(T). We
will furthermore identify the necessary spaces in which the respective (MP2, CCSD, CCSD(T))
equations have to be solved in order to arrive at a final correlation energy that underlies rigorous
error control. We will furthermore develop a screening technique, which allow us to reduce the
number of pair calculations in a DEC calculation, maintaining error control and finally we will
describe a practical black box method for identifying the necessary orbital spaces.
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6.2.1 Space extensions in MP2 fragment calculations

The MP2 amplitude equations constitute a set of linear equations with a positive definite coef-
ficient matrix

∑

c

tcbijFac +
∑

c

tacij Fcb −
∑

k

tabkjFik −
∑

k

tabikFkj = −gaibj , (6.13)

If a canonical HF basis is used the Fock matrix is diagonal and Eq. (6.13) is solved in one itera-
tion. If a basis of local orbitals is used the Fock matrix is diagonally dominant and Eqs. (6.13)
may be solved in a few iterations using standard iterative algorithms, such as the conjugate
gradient or the conjugate residual methods [26]. The diagonal dominance of the Fock matrix
is important for the identification of the local orbital spaces that are necessary for obtaining
the amplitudes required to evaluate the single fragment and pair interaction energies. We will
now examine how local orbital spaces propagate when single fragment energies are determined
during an iterative procedure where the MP2 amplitude equations are solved; in particular, we
will consider the propagation when the conjugate residual algorithm is used.

Iterative solution of the MP2 amplitude equations

When solving Eqs. (6.13) using the conjugate residual algorithm, the amplitudes of the (n+1)’th
iteration are determined from the amplitudes of the n’th iteration

tabij,n+1 = tabij,n + αRabij,n, (6.14)

where the residual Rabij,n of the n’th iteration

Rabij,n = −gaibj −
∑

c

tcbij,nFac −
∑

c

tacij,nFcb +
∑

k

tabkj,nFik +
∑

k

tabik,nFjk, (6.15)

is used as a search direction. In the conjugate residual method, a line search is performed along
the residual direction by optimizing the α parameter (see Chapter 2). The line search affects the
convergence rate of the algorithm, but it does not influence how new orbital spaces are intro-
duced in the iterative algorithm. For simplicity, we therefore set α = 1 in the rest of this analysis.

In the n’th iteration the energy for single fragment P is

ExP,n =
∑

Sx,P
EOS

tabij,nLiajb, (6.16)

where the set of amplitudes entering this expression t ∈ Sx,PEOS will henceforth be referred to as
EOS amplitudes. The energy change in iteration n, ∆ExP,n, is given by,

∆ExP,n = ExP,n − ExP,n−1,

=
∑

Sx,P
EOS

Rabij,n−1Liajb. (6.17)

where ExP,0 := 0. Using Eqs. (6.14) and (6.16) the converged single fragment energy may be
written as

ExP =

nit∑

n=1

∆ExP,n, (6.18)
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Figure 6.4: Iteration 2: The SP
1 space is symbolized by the squares in red and magenta. The residual

is generated in the SP
2 space (all colored boxes) where the cyan squares symbolize the space extension

SP
2 \ SP

1 in iteration 2. This space interacts directly with the orbitals of the EOS.

P

P

where nit is the total number of iterations in the iterative scheme and ExP = ExP,nit
. The

residual Rn ∈ Sx,PEOS approaches zero with increasing n and ∆ExP,n therefore becomes negligible.
We now apply the iterative procedure described in Eq. (6.15) and analyze the propagation of
the orbital space throughout the iterative procedure to identify the target orbital space required
for determining ExP to the predefined precision.

Propagation of orbital spaces during the iterative procedure

The EOS amplitudes are defined in So,PEOS and Sv,PEOS spaces for the occupied and virtual parti-
tioning schemes, respectively, see Figure 6.3. However, it is convenient to extend these spaces
slightly to put the analysis for the occupied and virtual partitioning schemes on an equal footing.
We therefore introduce the target space, SP1 ,

SP1 = [P ]2 × [P ]2, (So,PEOS ∪ S
v,P
EOS) ⊂ SP1 . (6.19)

To simplify the analysis below we collectively consider the EOS amplitudes for the occupied
and virtual partitioning schemes to be defined in the same target space SP1 .

In the first iteration of the iterative procedure described in Eq. (6.15) all amplitudes are set
to zero,

tabij,1 = 0, (6.20)

and therefore ExP,1 = ∆ExP,1 = 0. The single fragment energy is defined by the EOS amplitudes,

and we therefore restrict the residual of the first iteration to the target space SP1 . Using
Eq. (6.15) we thus obtain,

Rabij,1 = −gaibj ∈ SP1 . (6.21)

Using Eqs. (6.14) and (6.20), the amplitudes of the second iteration become

tabij,2 = Rabij,1 ∈ SP1 . (6.22)

The energy difference between the first and second iterations is thus,

∆ExP,2 =
∑

Sx,P
EOS

Rabij,1Liajb, (6.23)

where we have used Eq. (6.17). The EOS amplitudes in Eq. (6.22) relax through the iterations
and we now analyze the coupling mechanism leading to this relaxation.

Figure 6.2 shows that the distance decay of the two-electron integrals and the Fock matrix
elements are very similar. For simplicity and without loss of generality we therefore use the same
extents [P ] and [P ] to describe non-negligible two-electron integrals and Fock matrix elements
in the following analysis. A Fock matrix element Fij (Fab) where i ∈ [P ] (a ∈ [P ]) will thus be
non-negligible only if j ∈ [P ]2 (b ∈ [P ]2), where [P ]2 ([P ]2) is a spatial extension of [P ] ([P ]).
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Figure 6.5: Iteration 3: The residual is generated in the SP
3 space (all colored boxes) where the orbitals

of sites with light yellow squares (SP
3 \ SP

2 ) symbolize the orbitals which interact directly with the
orbitals of the SP

2 \ SP
1 space (cyan) through non-negligible Fock matrix elements, but not directly with

the orbitals of the SP
1 space (red and magenta).

P

P

Fab≈0

F ij≈0 F ij≠0

Fab≠0

In the second iteration the amplitudes in SP1 are coupled directly to sites in the proximity of
[P ] through summations with non-negligible Fock matrix elements in the residual of Eq. (6.15).
For example, the following terms of Eq. (6.15) for the second iteration illustrate space extensions
of the occupied and virtual spaces, respectively,

∑

k

tabik,2Fjk tabik,2 ∈ SP1 ; j ∈ [P ]2, (6.24a)

∑

c

tcbij,2Fca tcbij,2 ∈ SP1 ; a ∈ [P ]2. (6.24b)

The residual of the second iteration is thus given by,

Rabij,2 = −gaibj −
∑

c

tcbij,2Fca −
∑

c

tacij,2Fcb+
∑

k

tabkj,2Fik +
∑

k

tabik,2Fjk; R2 ∈ SP2 , t2 ∈ SP1 .

(6.25)

The space extension mechanism caused by non-negligible Fock matrix elements exemplified in
Eqs. (6.24) and (6.25) will henceforth be referred to as mechanism 1.

We now generalize the notation above and introduce the space SPn ,

SPn = [P ]2n × [P ]2n, (6.26)

where [P ]n ([P ]n) is the set of occupied (virtual) orbitals which have non-negligible Fock matrix
elements with at least one of the orbitals in [P ]n−1 ([P ]n−1), and where [P ]1 := [P ] ([P ]1 := [P ]1).

The amplitudes of the third iteration tabij,3 will be generated in SP2 according to Eq. (6.14)

giving the residual Rabij,3 ∈ SP3 , such that more, yet untouched components, of the environment
of P enters the residual through the coupling mechanism described in Eq. (6.24). The new
space components will not be coupled to SP1 directly as the Fock matrix elements between these
spaces are negligible, see Figure 6.5. The amplitudes in the SP3 \SP2 space thus interact directly
with the amplitudes of the SP2 \ SP1 space which in turn couples with the amplitudes in the SP1
space. Hence, the relaxation effects of the SP3 \ SP2 space on the EOS amplitudes will be small
and indirect, and these effects will therefore be referred to as secondary coupling effects.

For the fourth and following iterations these mechanisms are preserved, i.e., additional cou-
plings are introduced in the already considered space and new spaces are introduced which
indirectly couple to the Sx,PEOS space through other spaces. The effects on the EOS amplitudes
from the newly introduced spaces thus become more indirect and smaller in each iteration.

The above developments may be summarized as follows. To evaluate the single fragment
energies we need the amplitudes of the Sx,PEOS space that was introduced in iteration 1. The

EOS amplitudes are a subset of the amplitudes of SP1 , which has the same extent as Sx,PEOS. In
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Figure 6.6: All the orbitals that were found to be important for the determination of the EOS am-
plitudes to a certain precision are collected in an effective coupling space SEFF shown as green squares.
The effective coupling environment of P is denoted [P ]EFF.

P

P

the second iteration direct coupling to the outside space SP2 \ SP1 is introduced which affects
the EOS amplitudes significantly. The SP2 \ SP1 space is therefore important for the evaluation
of the single fragment energy. The effects of the additional spaces introduced in the following
iterations affect the EOS amplitudes only indirectly and are referred to as secondary, tertiary,
etc. effects. The requested precision will consequently define how much of the environment of
P has to be considered. When evaluating the single fragment energies, we may introduce an
effective coupling space SPEFF where the MP2 equations are solved to give the EOS amplitudes to
the requested precision (the FOT), see Figure 6.6. Since SPEFF is the space where the amplitude
equations have to be solved, it will also be referred to as the amplitude orbital space (AOS).
When calculating the single fragment energy, a determination of the EOS is impractical, and
we thus simply redefine [P ] := [P ]EFF (compare Figs. 6.5 and 6.6), i.e., the [P ] and [P ] spaces
in Eqs. (6.6) and (6.8) are effectively replaced by [P ]EFF and [P ]EFF.

6.2.2 Space extension in CCSD fragment calculations

The CCSD amplitude equations may be viewed as a nonlinear extension of the MP2 amplitude
equations where the additional terms are of higher order in a Møller-Plesset perturbation anal-
ysis of the equations. Thus, the energetically largest contributions leading to a space extension
have been considered in Section 6.2.1. The focus of this section is to analyze the space exten-
sions that may be introduced in the residual of Eq. (6.14) by the additional smaller terms of
the CCSD amplitude equations. In order to simplify the notation in the following section, the
CCSD doubles residual in the T1 transformed formulation from Eq. (1.54) may be rewritten as

CCSDRD = ΩA2 + ΩB2 + ΩC2 + ΩD2 + ΩE2, (6.27)

and the CCSD singles residual from Eq. (1.53) then reads

CCSDRS = ΩA1 + ΩB1 + ΩC1 + ΩD1, (6.28)

where the individual terms are given in Table 1.2 and we recall that the T1 transformation,
denoted by the tilde in Table 1.2, is introduced by using the transformation matrices Λp and
Λh from Eqs. (1.48) and (1.49), instead of the MO transformation matrices C.

When the singles amplitudes are neglected, CCSDRD becomes the nonlinear CCD residual
CCDR (removing the tildes in Table 1.2). The starting point for analyzing orbital space exten-
sions for CCSD fragment energy calculations is an analysis for the CCD fragment energy in
Section 6.2.2. In Section 6.2.2 we describe the progression of orbital spaces in CCSD when the
effects of singles amplitudes are considered.

Space extension mechanisms in the CCD model

The space extension due to the MP2 part of the residual CCDR was considered in Section 6.2.1
and we will now focus on how the terms of the CCD equations beyond MP2 lead to space exten-
sions in the iterative process. We may use the framework established for MP2 in Section 6.2.1
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with the only modification that, when solving the nonlinear CCD equations using the conjugate
residual method [26], the residual Rabij,n defined in Eq. (6.15) has to be replaced by the residual
CCDRabij,n.

The MP2 amplitude equations in Eq. (6.15) correspond to gaibj in RA2 and the linear
Fock matrix terms of RE2 in the CCD amplitude equations. The CCD equations thus contain
contain additional terms where two–electron integrals are contracted linearly or quadratically
with cluster amplitudes. The quadratic terms do not contribute to the space extension of the
residual since all the indices entering these contributions are fixed by the amplitudes of the
previous iteration. For example, in the second part of the ΩB2

n term,
∑

kl

∑
cd t

ab
kl,nt

cd
ij,ngkcld, the

integral indices are fixed to the space of the cluster amplitudes of iteration n and therefore no
space extension is introduced in the residual.

For the MP2 analysis in Section 6.2.1 we encountered the space extension mechanism due
to non-vanishing Fock matrix elements. We now consider three additional space extension
mechanisms for CCD and CCSD, which may be summarized as follows:

1. A propagation due to non–vanishing Fock matrix elements

2. A propagation due to non–vanishing charge distributions in two-electron integrals

3. A propagation due to long-range interactions between charge distributions

4. A propagation due to the T1 transformed Fock matrix.

Mechanisms 1, 2, and 3 are present for CCD, while mechanism 4 is present only for CCSD
and will be discussed in Section 6.2.2. An example of mechanism 2 is the second term in ΩA2

aibj,n,
i.e.,

ΩA2.2
aibj,n = −

∑

cd

tcdij,ngacbd. (6.29)

At iteration n the amplitudes tn ∈ SPn−1, and thus the free indices a, b of the integrals gacbd
are fixed by the charge distributions ωac and ωbd to the dummy indices c, d of the summation.
Thus, assuming that the non–vanishing Fock matrix elements and the non–vanishing charge
distribution of the integrals have the same extent (see Figure 6.2b), ΩA2.2

n ∈ SPn is defined in
the same space as the MP2 residual of the same iteration. In short, mechanisms 1 and 2 leads
to the same space extensions.

All additional terms of the CCD doubles residual follow mechanism 2 except for one of the
terms in ΩD2

n which is denoted as ΩD2.1
n and given by,

ΩD2.1
aibj,n = −

∑

ck

tbcjk,ngaikc. (6.30)

Again, the amplitudes of iteration n are defined in tn ∈ SPn−1 and the dummy indices of the
summation k, c are therefore restricted to that space. The charge distribution ωai is thus only
bound to the center P by its inherent third power decay with the distance between the charge
distributions ωai and ωkc in the gaikc integral (see Figure 6.7 and Ref. 38). Mechanism 3 may
thus lead to a further extent than mechanisms 1 and 2.

In Figure 6.8a we compare the decays of Fock matrices and two-electron integrals which
represent the different decay mechanisms as indicated in the figure. The decays are initially
similar but at larger distances mechanism 3 decays slower than mechanism 1 and 2. However,
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Figure 6.7: Long-range interactions in the ΩD2.1
aibj,n term between the amplitudes tbcjk,n ∈ SP

n and the

charge distribution outside SP
n , i.e., ωai /∈ [P ]n × [P ]n (shown here for n = 1). The charge distribution

ωai interacts with the charge distribution ωkc via an R−3 distance decay in the gaikc integrals [38].

c P b

k P j

a

i

ωia ωkc ω jbR−3

we recall that all space extension mechanisms only lead to a relaxation of the EOS amplitudes
which has an indirect effect on the single fragment energy and also that mechanism 3 influences
only one of the CCD residual terms. We therefore expect that mechanism 3 has a small effect
on the single fragment energy which becomes important only for very high precision.

This analysis is supported by the numerical illustrations in Figure 6.8b where the error
decay of the single fragment energy in Figure 6.1 is given for the MP2 model (mechanism 1),
a modified CCD model where the term decaying according to mechanism 3 has been removed,
and the regular CCD model where mechanisms 1, 2, and 3 are all present. The mechanisms
present in the model is given in parenthesis after the model name. For small expansion radii
RP the three models decay similarly although the CCD(1,2) and CCD(1,2,3) errors are smaller
than the MP2(1) error in the region from 4-8Å due to a fortuitous error cancellation. However,
if a very high precision is requested (below a FOT of 10−7 for the present illustration) mech-
anism 3 dominates and needs to be taken into account. Thus, unless extremely high precision
is requested, the orbital spaces determined from a CCD analysis are very similar to those ob-
tained from an MP2 analysis. In general we may redefine the square bracket notation [P ] as
the orbital space that interacts with P through any of the mechanisms 1, 2, or 3 and find that
it is possible to solve the coupled cluster equations to a predefined precision within a restricted
effective coupling space SEFF.

Space extension mechanisms in the CCSD model with focus on the effect of singles

In Section 6.2.2 we described the progression of the space extension for the cluster amplitudes
in a CCD calculation. In this section we examine the space progression when singles amplitudes
are considered and the residual equation is the CCSD residual.

As for the doubles amplitudes, the singles EOS amplitudes are defined by Eqs. (6.6) and (6.8).
We find that the space of the singles residual of iteration n has the same extent [P ]n as the
doubles residual SPn (disregarding mechanism 3). This may also be seen indirectly from the fact
that the singles and doubles amplitudes tai and tabij are comparable in size and display a similar
decay behavior as shown in Figure 6.9. Then, the amplitudes of iteration n have the extent
[P ]n−1. The space extension in the singles residual occurs only through mechanism 2 and is
thus accounted for in Section 6.2.2. In order to facilitate the analysis for the doubles residual,
we turn around the point of view and identify the coupling contributions from external spaces
to the doubles residual CCSDRDn within the EOS SoEOS, i.e., we consider the EOS indices fixed
and the summation indices are restricted to SPn−1 by the residual. In the integral contribution
g̃aibj to the doubles residual all indices are T1 transformed and in iteration n it may be written
as

g̃aibj = gaibj+
∑

k

tak,ngkibj+· · ·+
∑

kc

tak,nt
c
i,ngkcbj+· · ·+

∑

kcl

tak,nt
c
i,nt

b
l,ngkclj+· · ·+

∑

kcld

tak,nt
c
i,nt

b
l,nt

d
j,ngkcld,

(6.31)
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where one example for each linear, quadratic, cubic, and quartic terms in the singles amplitudes
is explicitly given. Since we have chosen to look at g̃aibj ∈ SoEOS, we find that terms that are
linear in the singles amplitudes will only couple directly to [P ] through the non-vanishing charge
distribution ωki (or to [P ]2 through the respective virtual T1 transformation) and thus expands
as mechanism 2. The quadratic coupling terms extending furthest in space couple directly to
an environment where a charge distribution (ωkc) is bound to a charge distribution of the EOS
(ωbj) by mechanism 3. Cubic and quartic terms in the singles amplitudes may couple directly
to [P ]n and are bound only loosely to the EOS. From Figure 6.9 we see that terms which are
quadratic in the singles amplitudes will introduce a minor modification of the residual in the
EOS compared to the terms linear in the cluster amplitudes, and therefore the effect on the
energy of these terms will be small (contributions from cubic and quartic terms of Eq. (6.31)
will be even smaller). That the singles effects are small in general, is shown in Figure 6.10.
The space extension contribution from the singles entering through T1 transformed integrals
will thus be dominated by a charge distribution decay mechanism (mechanism 2).

The ΩE2
n , ΩC1

n , and ΩD1
n terms have Fock matrix contributions constructed from a T1-

transformed density matrix which can be written as [9],

D̃µν = Dµν +
∑

ia

Cµit
a
iCνa, (6.32)

where Dµν is the HF density matrix. In a practical DEC calculation for single fragment P the
i and a summations in Eq. (6.32) are restricted to the [P ]EFF space, leading to errors in D̃µν .
This error type was denoted mechanism 4 in Section 6.2.2.

Figure 6.8: Decays of Fock-matrix elements, two-electron integrals, and single fragment energies.
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and long-range R−3 decay of two-electron integrals
(mechanism 3: diamonds).
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(b) Decay behavior of the (occupied) single frag-

ment energy error δEo
P = Eo,f

P − Eo
P , and Eo

P is
obtained from Eq. (6.6). The error decay is shown
for MP2 (mechanism 1), a modified CCD model
where long-range terms have been removed (mech-
anisms 1 and 2), and a regular CCD calculation
(mechanisms 1, 2, and 3).
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To isolate the errors associated with the T1-transformed two-electrons integrals from the
ones associated with the T1-transformed density matrix we have defined a modified CCSD(1,2,3)
model where the exact T1-transformed density matrix is used, i.e., all singles amplitudes are
included in Eq. (6.32) such that errors of type 4 do not occur. This model is to be compared
with the actual DEC–CCSD model where the a and i summations in Eq. (6.32) are restricted to
the [P ]EFF space, i.e., errors of type 1, 2, 3, and 4 all occur and this model is therefore denoted
CCSD(1,2,3,4).

In Fig. 6.10 we compare the single fragment energy errors for the occupied partitioning
scheme for various models. It is seen that the errors of the CCD(1,2,3) and CCSD(1,2,3)
models are very similar, indicating that the use of T1-transformed two-electron integrals in
CCSD does not lead to additional space extensions as compared to CCD(1,2,3) in accordance
with the analysis above. On the other hand the decay of CCSD(1,2,3,4) model is very slow for
high precision (errors below ≈ 10−7 a.u.), indicating that the truncating errors in the a and i
summations in Eq. (6.32) become dominating.

Figure 6.10 thus indicates that mechanism 4 is not important for fragment errors of interest
in practical applications (e.g., a FOT of 10−4 or 10−5 a.u.). However, if a high-precision D̃
matrix is requested, one may start by carrying out all single fragment calculations and collect
the singles amplitudes (tai for i ∈ P and a ∈ [P ]EFF for all single fragments P ) in a full molecular
singles amplitudes matrix, tfull

1 . D̃µν may then be calculated using tfull
1 and this improved density

matrix is then used in a second round of single (and pair) fragment calculations.

Figure 6.9: Decay of the singles and doubles amplitudes. In order to estimate their respective en-
ergy contributions, the singles amplitudes have also been squared according to the correlation energy
expression, see Eq. (1.33).
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Summary for the space extension in a fragment CCSD calculation

In this section we have in detail analyzed how orbital spaces extend when CCSD amplitude
equations are solved to obtain the amplitudes that are required to evaluate to fragment energy
within the requested precision. The conclusion is that the orbital spaces used for evaluating
fragment energies used for MP2 may only be used for fragment energies at the CCSD for
practical purposes. In Figure 6.11, we have given the MP2 and CCSD single fragment errors for
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Figure 6.10: Illustrating the effect of mechanisms 1–4 on the single fragment energy error δEo
P ,

where for comparison the errors of CCD(1,2,3) (blue) and CCSD without coupling errors (cyan) are
displayed. When eliminating mechanism 4 from CCSD(1,2,3,4) (green), the decays of CCSD(1,2,3) (red)
and CCD(1,2,3) are almost superimposed. The artificially good CCSD fragment energies result from
sign changes in the errors.

0 5 10 15 20 25 30

Distance RP [Å]

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Fr
a
g
m

e
n
t 

e
n
e
rg

y
 e

rr
o
r 
δE

o P
[a
.u
.]

CCD(1,2,3)
CCSD(1,2,3)
CCSD(1,2,3,4)

Figure 6.11: Error in the single fragment energy for occupied partitioning scheme as function of
expansion radius for MP2 and CCSD. Blue (red): MP2 (CCSD) error when amplitude equations have
been solved in the [P ]EFF space (see Figure 6.6) and the virtual summation in Eq. (6.6) is restricted to
[P ]EFF (practical DEC calculation). Green (cyan): MP2 (CCSD) error when the amplitude equations
have been solved in the full orbital space, while the virtual summation in Eq. (6.6) is still restricted to
[P ]EFF (artificial DEC calculation which removes coupling errors).
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the occupied partitioning scheme in Eq. (6.6) as a function of expansion radius in Figure 6.1.
We compare a practical DEC calculation where the amplitude equations are solved within
the [P ]EFF space (see Figure 6.6) to an artificial DEC calculation where the coupling errors
have been removed (the amplitude equations have been solved in the complete orbital space).
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Clearly, when the amplitude equations have been solved in the complete orbital space, the
MP2 (green) and CCSD (cyan) errors are virtually identical, demonstrating that the errors are
determined by the decay of the two-electron integrals in Eq. (6.6). On the other hand, solving
the amplitude equations in the restricted [P ]EFF space in general increases the MP2 (blue) and
CCSD (red) errors slightly (compared to using the amplitudes converged in the full space) for
single fragment errors up to about 10−6 a.u. where the long range effects in the doubles residual
start to dominate. From about 10−7 a.u. precision, special attention has to be addressed to the
way singles are treated, e.g. by using the improvement to the T1 transformed density discussed
in Section 6.2.2.

In Figure 6.12, we have given the decays of the single fragment energy errors for a selected
fragment of decanoic acid, using the cc-pVDZ basis for the occupied and virtual partitioning
schemes. For both partitioning schemes, there is a crossover of the MP2 and CCSD single
fragment error, which occurs at 10−4 a.u.i (10−5 a.u.) for the virtual (occupied) partitioning.
This demonstrates that a determination of the fragment sizes at the MP2 level can lead to
increased errors at the CCSD level, as will be shown numerically in Section 6.4. For the
calculations presented in Figure 6.12, we find that a part of the reason for the early crossover
of the MP2 and CCSD error decays is due to mechanism 3, as shown by the lower crossover of
the MP2(1) and CCD(1,2) models.

In summary, the theoretical analysis of the present section in combination with Figs. 6.11
and 6.12 demonstrates that for some practical calculations MP2 and CCSD calculations may
employ the same local orbital spaces [P ]EFF. However, the stronger coupling effects of the CCSD
equations (mechanisms 3 and 4) makes it practically impossible to achieve fragment energies
more accurately than ≈ 10−6 a.u., and even at lower accuracies, the precision of a fragment
calculation may not be guaranteed. On the other hand, upon lowering the FOT, the precision
of the overall calculation is guaranteed to be better. How the fragments may be optimized,
to obtain the CCSD single fragment energy with the desired rigorous error control, is work in
progress.

6.2.3 The DEC–CCSD(T) method

As discussed in the introduction, the contractions of the conventional formulation of the (T)
in Eq. (1.57) are limited to the canonical HF basis. Thus, as the local nature of the triples
amplitudes cannot be explored within this highly nonlocal basis, locality considerations cannot
be used to reduce the overall computational scaling of the (T) energy correction whenever the
formulation in Eq. (1.57) is used. On the other hand, the alternative expression in Eq. (1.63) is
valid in any basis of optimized HF orbitals, be that a canonical or a local basis, and it despite
its increased cost it is therefore beneficial to work with Eq. (1.63). Since the intermediates in
Eq. (1.64) are constructed from triples amplitudes and MO integrals only, it is possible to take
advantage of the locality of these two quantities when evaluating T abij and T ai and, in return,
E(T) in a local basis. We will now show how Eqs. 1.63 and 1.64 can be used to reduce of the
overall computational scaling of the (T) energy correction.

In Eq. (6.1) and Eqs.. (6.2)-(6.5), the CCSD correlation energy is written in such a way that
the summations over the two occupied orbitals, i and j, in Eq. (1.32) are replaced by summa-
tions over the atomic sites P and pairs of atomic sites P,Q and summations over orbitals i, j
assigned to the respective atomic sites. In this section, we will formulate the (T) correction to
the CCSD energy in a similar way, and give a short rationale for why the (T) correction can be
restricted to the AOS identified at the CCSD level of theory.
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Figure 6.12: Error in single fragment energy for the occupied (left) and virtual (right) partition-
ing schemes as function of expansion radius for MP2(1), CCD(1,2), CCSD(1,2,3), and CCSD(1,2,3,4).
Green/gray/red/yellow: absolute MP2(1)/CCD(1,2)/CCSD(1,2,3)/CCSD(1,2,3,4).
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(a) Occupied partitioning
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(b) Virtual partitioning

As the (T) correction in Eq. (1.63) contains similar summations over occupied and virtual
orbitals, we may likewise substitute these by summations over atomic sites P and pair sites
P,Q as in Eq. (6.1)

E(T) =
∑

P

[E
(T)
P +

∑

Q<P

E
(T)
PQ], (6.33)

where the triples single fragment energy, E
(T)
P , and triples pair interaction energy, E

(T)
PQ, are

given as

E
(T)
P = E

[4]
P + E

[5]
P , (6.34a)

E
(T)
PQ = E

[4]
PQ + E

[5]
PQ. (6.34b)

Since the CCSD doubles amplitudes are similarly restricted in space as the two electron integrals
(see Figures 6.2b and 6.9) we may restrict the summations in the fourth and fifth order (T)
energy contributions may be restricted. The expression for the local (T) fourth order single
fragment and pair fragment energy contribution then read

E
[4]
P = 2

∑

ij∈P

∑

ab∈[P ]

uabij T
ab
ij , (6.35a)

E
[4]
PQ = 2

(∑

i∈P
j∈Q

+
∑

i∈Q
j∈P

) ∑

ab∈[P∪Q]

uabij T
ab
ij , (6.35b)
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while the fifth-order terms become

E
[5]
P = 2

∑

a∈P

∑

i∈P
tai T

a
i , (6.36a)

E
[5]
PQ = 2

(∑

a∈P
i∈Q

+
∑

a∈Q
i∈P

)
tai T

a
i , (6.36b)

with the T abij and T ai intermediates given in Eq. (1.64).
Comparing the CCSD and (T) fragment and pair interaction energies, we note how the

energies in Eq. (6.33) and in Eq. (6.1) are split in the same way. Furthermore, we note how
the fourth order term in Eqs. (6.35) and (6.36) is partitioned in analogy with the occupied
partitioning in Eqs. (6.6) and (6.7), that is the summations over occupied orbitals are replaced
by summations over the atomic sites and pairs of atomic sites to which the local HF orbitals have
been assigned. Also note that a virtual partitioning of the fourth order contribution is possible,
but for simplicity we will not go into the details. For the fifth-order term in Eq. (6.36), however,
we have chosen a partitioning in which both single excitation indices refer to the same atomic
site for the single fragments, while for the pair interaction energies, the indices are assigned to
different atomic sites.

In practice, the actual spaces required for the accurate evaluation of the (T) correction
will be constrained to the truncated SPEFF spaces used in the preceding calculation of the CCSD
correlation energy due to two primary reasons. First, as the fourth- and fifth-order contributions
to the correction are constructed from CCSD singles and/or doubles amplitudes, these will
only be satisfactorily described within truncated fragment spaces suitable for the CCSD model.
Second, the total (T) correction is known from the literature to be roughly an order of magnitude
smaller than the CCSD correlation energy [9], and the errors introduced from reusing the CCSD
fragment spaces are thus expected to be minor compared to the intrinsic FOT error. As a
result, we will refrain from attempting to improve upon the underlying SPEFF spaces obtained
for the CCSD model when evaluating the (T) correction. Furthermore, we will also use union
spaces in the calculation of (T) pair interaction energies. Both of these assumptions will be
numerically justified from the DEC-CCSD(T) results in Section 6.4.2. Also, we will demonstrate
numerically that the (T) correction to the pair fragment energy contribution EPQ will decay
with the distance between centers P and Q as R−6

PQ, as a dispersion contributions.

6.3 Implementation of DEC single fragment and pair fragment
calculations

In the previous section we have seen how the spaces of single fragment and pair fragments may
be chosen in order to maintain rigorous error control in a DEC calculation. In Section 6.3.1 we
develop a black box algorithm that determines the single fragment spaces such that fragment
energies with the requested precision are obtained. In Section 6.3.2 we describe an energy–
based screening technique which ultimately renders the DEC algorithm linear scaling and which
removes many of the expensive pair fragment calculations.

6.3.1 The single fragment optimization algorithm

The theoretical analysis in Section 6.2 shows how the single fragment orbital spaces can be cho-
sen in order to maintain rigorous error control in a DEC calculation. In this section we describe
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Figure 6.13: The fragment optimization algorithm consists of two steps. In the fragment expansion
procedure (left) a reference orbital space is determined based on Eq. (6.37). In the reduction procedure
(right) this reference orbital space is fine-tuned using a binary search algorithm where the step direction
is based on Eq. (6.40). Red: Orbitals included in the current fragment. Blue: Distance-based list of
orbitals. Green: Energy-based list of orbitals. Grey: Discarded orbitals.
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a practical implementation for determining the single fragment energies to the predefined FOT
precision.

The fragment optimization algorithm for the single fragment energy ExP includes two main
steps: the fragment expansion procedure where [P ]EFF is increased until the difference between
the last two fragment energies is lower than the FOT, and the reduction procedure where
the information obtained during the expansion step is utilized to fine-tune [P ]EFF without
compromising the FOT precision.

Expansion of the orbital space

In the first step of the fragment optimization algorithm two lists of occupied and virtual orbitals
are constructed where the orbitals are ordered according to a measure that estimates their
contribution to the single fragment energy ExP . Since we use local HF orbitals a simple yet
reasonable measure is the distance between the orbital’s center of charge and the center P of
the fragment. In each expansion step a predefined number of orbitals (vide infra) is added to
the fragment orbital space [P ]EFF. The fragment expansion is illustrated in Figure 6.13 (left).
The energy of each expansion step is evaluated at the requested level of theory using Eqs. (6.6)
and (6.8), and the energy difference between two subsequent steps i and i+ 1 is calculated,

δeE
x
P (i) = |ExP (i)− ExP (i+ 1)| x = o and x = v, (6.37)

The expansion procedure continues until δeE
x
P (n−1) < FOT and the energy contribution from

orbitals not considered in step n is therefore assumed to be below the requested precision. This
is a reasonable assumption due to the rapid decay of the single fragment energy with respect
to the inclusion of additional orbitals, see, e.g., Figure 6.11. We consider the [P ]nEFF space of
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expansion step n to be the reference space for the reduction procedure and rename it as [P ]REF.
In this way all the information acquired during the expansion procedure is used in the reduction
procedure.

The number of orbitals added in each expansion step needs to be large enough to avoid false
convergence and small enough to prevent the orbital space [P ]EFF from becoming unacceptably
large. In practice we include 5 ·nocc/natoms occupied and 5 ·nvirt/natoms virtual orbitals in each
expansion step, where natoms is the number of atoms while nocc and nvirt are the numbers of
occupied and virtual orbitals in the molecule, respectively. Extensive testing has shown that
this choice is a reasonable compromise between accuracy and computational cost.

Reduction of the orbital space

The reduction step defines the final single fragment orbital spaces and thus the pair fragment
orbital spaces which are obtained as unions of single fragment orbital spaces (see Appendix B.2).
Since the pair fragment calculations dominate the total DEC calculation it is crucial to reduce
the single fragment sizes as much as possible within the chosen FOT precision to reduce the
cost of the total calculation. To achieve this, a binary search algorithm is used in connection
with a priority list of orbitals where the energy of the expanded fragment, ExP (n), serves as a
reference. Using the energy expression of the occupied partitioning scheme in Eq. (6.6) and the
information obtained for the converged fragment space [P ]REF, we may define a measure of the
energy contribution of a given virtual orbital a,

εaP =

∣∣∣∣
∑

ij∈P

∑

b∈[P ]REF

τabij Liajb

∣∣∣∣. (6.38)

Similarly, based on the energy expression of the virtual partitioning scheme in Eq. (6.8) we
define a measure for the energy contribution of an occupied orbital i,

εiP =

∣∣∣∣
∑

ab∈P

∑

j∈[P ]REF

τabij Liajb

∣∣∣∣. (6.39)

Using the measures in Eqs. (6.38) and (6.39) we define priority lists for the occupied and virtual
orbitals which are then used to remove the least important orbitals of the [P ]REF orbital space
in the reduction procedure, see Figure 6.13 (right). After each step j in the binary search
algorithm the energy is evaluated and compared to the energy of the reference single fragment,

δrE
x
P (n+ j) = |ExP (n+ j)− ExP (n)|, x = o and x = v, (6.40)

where ExP (n) is the reference energy from the expansion step. The step is accepted if

δrE
x
P (n+ j) < FOT, x = o and x = v, (6.41)

and in this case the next step will further decrease the fragment size. On the other hand, if
δExP ≥ FOT for x = o or x = v, the next step will increase the fragment size, see Figure 6.13.
This process is repeated until the orbital space [P ]EFF is converged, and the final fragment
orbital space is the one that corresponds to the last accepted step of the reduction procedure.
We note that relaxation effects are neglected in the energy contribution measures in Eqs. (6.40)
and (6.41), and this is the reason why it is necessary to reevaluate the single fragment energy for
the occupied and virtual partitioning schemes in each step of the fragment reduction procedure.
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Figure 6.14: The pair-energy contributions in an arbitrary DEC calculation are plotted as red dots
for each pair-fragment against the distance between the centers. Using an energy–based cutoff Ethr

(neglecting pairs below the horizontal line), allows for removing more pairs than a (conservatively chosen)
real–space cutoff Rthr, (neglecting pairs to the right of the vertical line).
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Summary and cost reduction considerations

The fragment optimization algorithm in Figure 6.13 is by no means unique but it is an eas-
ily programmable approach which ensures that each single fragment energy has a precision
corresponding to the input FOT, which ultimately defines the precision of the total calculation.

We also note that the fragment optimization may be performed at a different level of theory
than that of the target model. For example, for a DEC–CCSD calculation it is possible to
determine the fragment orbital spaces by applying the procedure in Figure 6.13 at the MP2 level.
We may furthermore reduce the cost of the fragment reduction procedure by considering the
procedure converged when only a fraction of the original orbitals is left in the search interval. In
practice, the fragment reduction algorithm will return a fragment when the final search interval
is 5% of [P ]REF.

As described in Section 6.2.2 using MP2 for the fragment optimization is a feasible ap-
proach for a typical FOT (e.g. FOT=10−4 a.u.). However, for a reliable DEC–CCSD energy, it
is required that the CCSD model is also used for the fragment optimization algorithm in Fig-
ure 6.13. Due to the sign changes of the CCSD error, a fragment optimization using only the
CCSD energy as reference may lead to false convergence, and in that case it may be necessary
to check both the MP2 and CCSD energies for convergence. No data to support this option
have been obtained yet, as it is currently work in progress to find a thorough procedure for the
CCSD fragment optimization. The CCSD fragment optimization is quite expensive, but it may
be possible to reduce the cost of the fragment optimization by invoking approximate methods
e.g. resolution-of-the-identity (RI) techniques [103], or tensor–hyper–contractions [104], only to
determine the AOS.

6.3.2 Screening of pair fragment energy contributions

In the previous sections we discussed in detail how single fragment orbital spaces may be chosen
to obtain the single fragment energy to a predefined tolerance for any of the model WFs MP2,
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Figure 6.15: An estimation of the pair energy contribution EPQ may be obtained by MP2 calculations

where [P ]esti,xEFF is chosen such that the nearest neighbors of the sites are included and the calculation is

performed in [P ∪Q]estiEFF and provides the estimate Eesti,x
PQ .

PQ

PQ

CCSD, or CCSD(T). We dedicate this section to the development of an efficient pair screening
method based on energy estimates to reduce the number of pair calculations in DEC.

In a DEC calculation the pair fragment energy contributions decay as R−6
PQ (see Figure 6.14),

and distant pair energy contributions are therefore negligible. Previously, a real-space cutoff was
used to remove distant pair calculations and render the DEC method linear-scaling. In order to
preserve error control, this cutoff had to be chosen conservatively and as a result far too many
pair-contributions had to be calculated. The real-space cutoff did neither provide a rigorous
measure of choosing the necessary contributions to obtain the energy correctly nor did it provide
an effective screening method to remove pairs at similar distances but with very different energy
contributions (see Figure 6.14). An energy-based cutoff, would therefore allow for a rigorous
screening technique that removes many more pairs than a real–space cutoff without any loss of
precision. In this subsection we focus on developing an energy–based screening technique, which
allows for efficient characterization of the energy contributions of pair fragments and whether
a given pair-fragment has to be calculated or may be skipped.

Error of the neglected pairs

In order to rationalize the screening technique, it is convenient to reformulate the DEC corre-
lation energy expression from Eq. (6.1) as

Excorr =
N∑

P

[ExP +
1

2

N∑

Q 6=P
ExPQ], (6.42)

where N is the number of fragments. The errors in the final correlation energy δEcorr may then
be evaluated as

δExcorr =
N∑

P

[δExP +
1

2

N∑

Q 6=P
δExPQ]. (6.43)

Conceptually, the single fragment energy EP is determined in a DEC calculation such that
δExP ≤ FOT and from the discussions in Section 6.2 and Ref. 38 we know that δExPQ ≤ FOT

and that both ExPQ and δExPQ decay as R−6
PQ. In order to have a balanced error between the

single fragment and pair fragment contributions in Eq. (6.43), we may choose to neglect all
contributions ExPQ such that neglecting them introduces a cumulated error the size of the FOT.

Pair energy estimates for efficient screening

A priori, the contributions of a pair fragment ExPQ are unknown, but it turns out that order-of-

magnitude estimates Eesti,x
PQ of these may be obtained by MP2 calculations on pair fragments that

are composed of the centers P and Q and orbitals on neighboring sites (see Figure 6.15). These
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calculations typically recover 80− 95% of the pair fragment correlation energy (see Section 6.4)
and thus provide a useful estimate of EPQ.

The cutoff in the pair calculations is then obtained by ordering the estimates according to
their absolute size, with the largest contribution first, |Eesti,x

P1 | ≤ |Eesti,x
P2 | ≤ · · · ≤ |Eesti,x

PN | and
exclude all the small pair contributions which have an accumulated estimated contribution of
size FOT to the correlation energy,

max
I




1

2

N∑

Q=I
Q 6=P

Eesti,x
PQ


 ≤ FOT, (6.44)

where N is the number of single fragments in a DEC calculation. The corresponding I fulfilling
the requirement in Eq. (6.44) will be referred to as IPmax. All the pair calculations for the set
{(P,Q)|1 ≤ Q ≤ IPmax, Q 6= P} are then carried out, and the total error in a DEC calculation
thus becomes a constant times the FOT. Please note that a pair fragment involving the atomic
centers P and R may have to be calculated from the perspective of P , but may have been
excluded according to Eq. (6.44) from the perspective of R. In any of this case, the pair
fragment calculation will have to be carried out and included in the final correlation energy.
Note that in practice, we only use the occupied partitioning scheme to obtain the estimates
Eesti,o
PQ .

6.4 Numerical illustrations

The algorithm devised in Figure 6.13 is a black-box method that operates based on the lo-
cality considerations of Section 6.2. In Section 6.4.1 we numerically demonstrate that this
algorithm leads to single fragment energies with the requested precision. Then in Section 6.4.2,
we demonstrate the overall error control for the DEC–MP2, DEC–CCSD and DEC–CCSD(T)
models based on the fragment optimization and pair–screening algorithms of Section 6.3. Fi-
nally in Section 6.4.3 we will analyze the pair interaction energy for the DEC–CCSD(T) model.
All of the calculations have been performed the set of the molecules presented in Figure 6.16,
where calculations involving any molecule labelled with a) used the cc-pVTZ basis set [28],
and calculations involving any molecule labelled with b) used the cc-pVDZ basis set [28]. All
calculations used the frozen core approximation and were carried out using a local development
version of the LSDALTON program [29,105].

6.4.1 Fragment Optimization

When evaluating the precision of single fragment energy calculations we compare each fragment
energy, ExP (from Eqs (6.6) and (6.8)), obtained from an orbital space determined by the
fragment optimization procedure in Figure 6.13 to the single fragment energy obtained in a full
molecular calculation, Ex,fP (from Eqs (6.2) and (6.4)). This investigation is therefore limited
to calculations for which the standard calculation is feasible at the MP2 and CCSD levels of
theory, which is the reason for the limited size of the test systems in Figure 6.16.

In Figure 6.17, we show the distributions of the numerical values of the single fragment

energy errors |δExP | = |ExP − E
x,f
P | and the mean values χ =

∑
P |δEx

P |
N (where N is the total

number of fragments considered) separately for the occupied (x = o) and virtual (x = v)
partitioning schemes. The orbital spaces [P ]EFF were optimized at the MP2 level of theory
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Figure 6.16: Structures of the systems considered. Two clusters consisting of twelve (1a) and twenty
(1b) water molecules; dodecanoic (2a) and hexadecanoic (2b) acid; three (3a) and four (3b) glycine
residues in an α-helix structure.

(1a) (2a) (3a)

(1b) (2b) (3b)

using the algorithm in Figure 6.13 for different FOT values. Single fragment energy errors are
reported for all the systems displayed in Figure 6.16.

In general, the fragment optimization procedure leads to errors that are of the requested
precision, but errors slightly larger than the FOT may occur, because the reference single
fragment energy ExP,n in the fragment expansion procedure in Figure 6.13 solely relies on the
steep decay of the fragment energy with the amount of orbitals included. Therefore converge
prematurely if not enough orbitals have been included in a step. For MP2, this can lead to
fragment energy errors, which are slightly above the FOT. For high precision CCSD calculations,
the single fragment energy converges slower than the corresponding MP2 single fragment energy
(see Figure 6.12). As a result of the fact that the fragments shown in Figure 6.17 were optimized
at the MP2 level, the CCSD errors may be larger than the corresponding MP2 errors. This
may be seen for the occupied partitioning and a FOT of 10−5 a.u. in Figure 6.17e. Even more
pronounced is the effect for the virtual partitioning, where the separation of the MP2 and
CCSD single fragment errors begins already at a FOT of 10−4 a.u. in Figure 6.17d. In fact, the
fragment with the biggest error in Figure 6.17f, is the one shown in Figure 6.12.

Also, smaller single fragment errors occur, i) because the binary search is not converged to
the last possible orbital, ii) the quality of the priority list of orbitals may be imperfect (one
orbital may prevent the removal of other less important orbitals), and iii) a cancellation of errors
in the CCSD case when the fragment is expanded. The latter error cancellation occurs because
the CCSD single fragment energy errors can have either sign while the MP2 errors are always
positive.

In Section 6.2 we discussed how CCSD became more long ranged than MP2 at 10−7 a.u.
However, the data presented in Section 6.2 was based on one single fragment calculation with a
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Figure 6.17: Distribution of the absolute single fragment energy errors |δEx
P | in the MP2 (blue) and

CCSD (red) for the occupied (x = o, left) and virtual (x = v, right) partitioning schemes, with respect
to calculations in the full orbital spaces and their mean values χMP2 (dotted) and χCCSD (dashed).
The DEC single fragment orbital spaces have been optimized at the MP2 level of theory for a FOT of
10−3 a.u. (6.17a and 6.17b), 10−4 a.u. (6.17c and 6.17d) and 10−5 a.u. (6.17e and 6.17f) for all systems
of Figure 6.16.
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(a) Distribution of single fragment energy errors
for a FOT of 10−3 a.u. for the occupied partition-
ing.
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(b) Distribution of single fragment energy errors
for a FOT of 10−3 a.u. for the virtual partitioning.
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(c) Distribution of single fragment energy errors
for a FOT of 10−4 a.u. for the occupied partition-
ing.
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(d) Distribution of single fragment energy errors
for a FOT of 10−4 a.u. for the virtual partitioning.
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(e) Distribution of single fragment energy errors
for a FOT of 10−5 a.u. for the occupied partition-
ing.
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(f) Distribution of single fragment energy errors
for a FOT of 10−5 a.u. for the virtual partitioning.
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6-31G basis set, only. Based on the larger sampling presented in Figure 6.17 it seems reasonable
to use MP2 optimized fragments for a CCSD calculation at a FOT of 10−5 a.u. for the occupied
partitioning scheme, but it is doubtful, whether doing the same for lower FOT values is justified.
For the virtual partitioning, the errors in the single fragment energies are decreased when the
FOT is decreased, but not by an order of magnitude, as desired. Thus, the FOT may still
be used for tuning the precision of a CCSD calculation for both, the occupied and virtual
partitioning schemes, in the sense that, if the FOT is lowered by an order of magnitude, the
mean absolute error in the fragment calculations is reduced but not systematically enough for
the virtual partitioning scheme. This is undesirable, and we therefore strive to find a more
reliable way of obtaining single fragments for DEC–CCSD and DEC–CCSD(T) calculations in
the future. The virtual partitioning scheme plays a central role for the calculation of molecular
properties and gradients [102], and it is therefore of central importance that the single fragment
AOS are determined accurately in the fragment optimization procedure for both the occupied
and virtual partitioning schemes.

As a last point of this section, we would like to emphasize the importance of the second
part of the fragment optimization algorithm in Figure 6.13, the fragment reduction procedure.
When comparing the sizes before and after the fragment reduction for all the fragments under
consideration we found that the average reduction of the number of occupied/virtual orbitals is
38.3%/38.8%. Thereby, the reduction was at least 10.8%/14.2% and ranging up to 68.8%/67.5%
for the occupied/virtual space. In terms of a V 4O2 scaling CCSD algorithm that corresponds
to a mean cost reduction of each single fragment calculation of about 97%, and even more in
terms of the time dominating pair fragment calculations.

In conclusion, the numerical data provided in this section support the theoretical analysis in
Section 6.2 and shows that the algorithm in Figure 6.13 is a useful practical implementation for
determining local orbital spaces, but it has flaws, which are understood, yet not cured. From
a practical point of view an important conclusion is that, for the FOTs of practical interest
considered here (10−3 a.u., 10−4 a.u., and 10−5 a.u.), the local orbital spaces determined at the
MP2 level of theory can also be used for CCSD calculations if only the occupied partitioning
scheme is used. This leads to significant savings compared to carrying out the fragment opti-
mization at the CCSD level of theory, particularly for the largest fragment calculation (the nth
step in Figure 6.13), but also introduces some ambiguity, as discussed. We do reiterate that
for a DEC–CCSD calculation with higher precision, or when molecular properties or gradients
are of interest, an improved version of the fragment optimization needs to be carried out at the
CCSD level of theory as described in Section 6.3.1.

6.4.2 DEC–MP2, DEC–CCSD and DEC–CCSD(T) energy calculations

In the present section, we analyze the performance currently implemented models of the DEC
hierarchy — DEC–MP2, DEC–CCSD, and DEC–CCSD(T) — and how their precision may be
tuned via the FOT towards their respective conventional canonical counterparts — MP2, CCSD,
and CCSD(T). Proof of concept investigations are performed the set of molecules/systems
from Figure 6.16. For all DEC calculations, the fragments were optimized using the procedure
described in Section 6.3, and using the occupied partitioning scheme is considered for the reasons
discussed in Section 6.4.1.

In the following, we compare DEC–MP2, DEC–CCSD, and DEC–CCSD(T) correlation en-
ergies calculated, using FOT values of 10−3 a.u., 10−4 a.u., and 10−5 a.u., to conventional
canonical MP2, CCSD, and CCSD(T) results. The total CCSD(T) correlation energy will be
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presented in terms of its constituent parts, the fourth- and fifth-order contributions of Eq. (1.56).
Table 6.1 gives conventional CC correlation energies for the molecules/systems listed in Fig-
ure 6.16. In Table 6.2, we investigate the performance of the DEC–MP2, DEC–CCSD, and
DEC–CCSD(T) models by reporting the total error in the DEC-CC correlation energy, i.e.,
the difference between the DEC-CC correlation energy (EDEC-CC) and the conventional CC
correlation energy for the full molecule (ECC),

δCC = EDEC-CC − ECC, (6.45)

as well as the DEC recovery of the full correlation energy,

∆CC =
EDEC-CC

ECC
. (6.46)

From the results in Table 6.2, we observe a reduction of the total error in the correlation
energy (δCC) by roughly an order of magnitude whenever the FOT is reduced by an equal
amount. This behavior is observed across all the models and even holds for the (T) energy
correction alone, which is consistent with the discussion in Section 6.2, and the data presented
in Figure 6.17, as only the occupied partitioning is assessed here. For all of the six test systems
in Figure 6.16, the DEC recovery (∆CC) for a given FOT is independent of the nature of the
system in question (homo- or heterogeneous, 1- or 3-dimensional overall structure, dominated
by covalent or hydrogen bonds, etc.). At a FOT of 10−4 a.u., for example, the DEC–CCSD(T)
model succeeds in recovering between 99.83% and 99.96% of the conventional CCSD(T) result.
Furthermore, we observe the same pattern for the relative errors in moving from a double-ζ to
a triple-ζ basis set.

Upon inspecting the individual entries of Table 6.2, we notice how the CCSD and (T) total
errors in the correlation energy are of similar magnitude, indicating that neither of the two
dominate the total CCSD(T) error. Phrased differently, no unnecessary efforts have been made
at determining any of the two contributions to the total CCSD(T) correlation energy at a higher
level of precision than the other. This is found to be true for both loose and tight FOT values.
The smaller recoveries for the (T) correction, i.e., larger relative errors, in particular at lower
FOT values, naturally arise due to the fact that the (T) correction is more than an order of
magnitude smaller than the CCSD correlation energy. The total CCSD errors, however, appear
at times to be artificially low, compare, e.g., the MP2 and CCSD errors for systems 1a and 2a
at a FOT of 10−4 a.u. This occurs because the CCSD single fragment error may have either
sign. Finally, we focus on the fourth- and fifth-order contributions to the (T) correction. As
mentioned in Section 6.2.3, the fourth-order contribution to the (T) energy correction is typically
an order of magnitude larger in size than the fifth-order contribution, and from Table 6.2, we

Table 6.1: Conventional canonical correlation energies (in a.u.) calculated within the cc-pVTZ basis
set for systems 1a, 2a, and 3a and the cc-pVDZ basis set for systems 1b, 2b, and 3b.

Model MP2 CCSD [4] [5] (T) CCSD(T)
System 1a −3.22086 −3.27285 −0.10832 0.00313 −0.10519 −3.37803
System 2a −2.54756 −2.66321 −0.11362 0.00348 −0.11014 −2.77350
System 3a −2.53798 −2.57194 −0.12294 0.00618 −0.11676 −2.68870
System 1b −4.19401 −4.34508 −0.08606 0.00381 −0.08225 −4.42733
System 2b −2.64643 −2.85048 −0.09245 0.00302 −0.08943 −2.93991
System 3b −2.64774 −2.73911 −0.10103 0.00709 −0.09394 −2.83305



6.4. NUMERICAL ILLUSTRATIONS 95

Figure 6.18: CCSD (∆ECCSD
PQ : blue circles) as well as fourth- and fifth-order (T) (∆E

[4]
PQ/∆E

[5]
PQ: green

squares and red crosses, respectively) contributions to the CCSD(T) pair interaction energy as a function
of the interatomic pair distance for system 1b.
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notice how this relationship holds for the total DEC errors as well. For this reason, both the
total and relative DEC errors for the (T) correction will be entirely dominated by those for
the fourth-order contribution. For the fifth-order contribution, we generally observe smaller
total errors, but larger relative errors, than for the fourth-order contribution, due to the fact
that the reference fifth-order contributions in Table 6.1 themselves are smaller. However, upon
tightening the FOT, the relative fifth-order errors begin to close in at the same level of accuracy
as observed for all of the other relative quantities in Table 6.2.

6.4.3 Pair interaction energies, with focus on the CCSD(T) model

As previously discussed for the MP2 and CCSD models [38, 39], the decay of the pair interac-
tion energies in Eqs. (6.1) and (6.33) with the interatomic distance is an integral part of the
DEC method as it allows for a screening of negligible contributions from distant pairs by the
procedure described in Section 6.3.2. As mentioned in Section 6.3.2, this screening reduces the
scaling of the method from one that depends quadratically on system size to one that depends
only linearly. In this section, we provide numerical results that support the theoretical investi-
gations of Section 6.2.3 on the rapid decay of the CCSD(T) triples pair interaction energies in
Eqs. (6.35b) and (6.36b) with the interatomic pair distance. In Figure 6.18, we plot the CCSD
as well as the fourth- and fifth-order (T) pair interaction energies as a function of interatomic
pair distance for system 1b. The results in Figure 6.18 have been obtained by carrying out a
CCSD(T) calculation on the full water cluster and subsequently extracting the pair interaction
energies using Eqs. (6.3), (6.35b) and (6.36b).

In Figure 6.18, we observe how the CCSD as well as the fourth- and fifth-order (T) con-
tributions all decay rapidly with interatomic pair distance for system 1b. As expected, the
fourth-order contributions are roughly an order of magnitude lower than the CCSD energies,
while the fifth-order contributions are roughly two orders of magnitude lower in energy. In
fact, the fourth-order contributions remain below the corresponding CCSD energies for all pair
interaction energies in Figure 6.18, which supports the argument in Section 6.2.3 that the (T)
correction has the same distance decay as the CCSD correlation energy. This is further con-
firmed by similar calculations on systems 2b and 3b shown in Figure 6.19, where the details
differ due to the characteristics (i.e. heterogeneity) of the system in question. Thus, the pairs
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Table 6.2: DEC-CC (MP2, CCSD, and CCSD(T)) total errors (δCC, in a.u.) and recoveries (∆CC,
in %) with respect to the conventional correlation energies in Table 6.1 for different values of the FOT
(in a.u.).

FOT 10−3 10−4 10−5 10−3 10−4 10−5

System 1a System 1b

δMP2 1.75 · 10−2 3.11 · 10−3 2.10 · 10−4 4.37 · 10−2 5.72 · 10−3 5.58 · 10−4

δCCSD 9.98 · 10−3 −5.47 · 10−4 −4.58 · 10−4 3.57 · 10−2 4.84 · 10−3 2.87 · 10−4

δCCSD(T) 1.70 · 10−2 2.42 · 10−3 −8.99 · 10−5 4.70 · 10−2 7.11 · 10−3 6.61 · 10−4

δ(T) 7.06 · 10−3 2.97 · 10−3 3.68 · 10−4 1.13 · 10−2 2.27 · 10−3 3.74 · 10−4

δ[4] 7.49 · 10−3 3.12 · 10−3 4.05 · 10−4 1.20 · 10−2 2.39 · 10−3 4.00 · 10−4

δ[5] −4.23 · 10−4 −1.54 · 10−4 −3.71 · 10−5 −7.04 · 10−4 −1.18 · 10−4 −2.55 · 10−5

∆MP2 99.46 99.90 99.99 98.96 99.86 99.99
∆CCSD 99.70 100.02 100.01 99.18 99.89 99.99
∆CCSD(T) 99.50 99.93 100.00 98.94 99.84 99.99
∆(T) 93.29 97.18 99.65 86.29 97.24 99.54
∆[4] 93.09 97.12 99.63 86.08 97.23 99.54
∆[5] 86.51 95.10 98.82 81.53 96.91 99.33

System 2a System 2b

δMP2 4.68 · 10−2 4.54 · 10−3 5.50 · 10−4 4.63 · 10−2 6.05 · 10−3 6.69 · 10−4

δCCSD 2.77 · 10−2 6.93 · 10−4 −1.37 · 10−5 1.76 · 10−2 3.40 · 10−3 3.79 · 10−4

δCCSD(T) 3.78 · 10−2 2.59 · 10−3 3.49 · 10−4 2.90 · 10−2 5.11 · 10−3 6.29 · 10−4

δ(T) 1.01 · 10−2 1.89 · 10−3 3.63 · 10−4 1.15 · 10−2 1.71 · 10−3 2.49 · 10−4

δ[4] 1.04 · 10−2 1.96 · 10−3 3.66 · 10−4 1.20 · 10−2 1.77 · 10−3 2.55 · 10−4

δ[5] −3.17 · 10−4 −6.63 · 10−5 −2.87 · 10−6 −4.74 · 10−4 −6.03 · 10−5 −5.14 · 10−6

∆MP2 98.16 99.82 99.98 98.25 99.77 99.97
∆CCSD 98.96 99.97 100.00 99.38 99.88 99.99
∆CCSD(T) 98.64 99.91 99.99 99.01 99.83 99.98
∆(T) 90.81 98.28 99.67 87.15 98.09 99.72
∆[4] 90.81 98.27 99.68 87.06 98.09 99.72
∆[5] 90.89 98.10 99.92 84.33 98.01 99.83

System 3a System 3b

δMP2 2.29 · 10−2 3.64 · 10−3 2.11 · 10−4 3.61 · 10−2 5.36 · 10−3 3.99 · 10−4

δCCSD 2.42 · 10−4 −9.54 · 10−4 −8.81 · 10−4 9.33 · 10−3 1.16 · 10−3 −6.03 · 10−4

δCCSD(T) 1.02 · 10−2 1.10 · 10−3 −5.35 · 10−4 2.06 · 10−2 3.06 · 10−3 −2.81 · 10−4

δ(T) 9.92 · 10−3 2.05 · 10−3 3.46 · 10−4 1.13 · 10−2 1.89 · 10−3 3.22 · 10−4

δ[4] 1.09 · 10−2 2.26 · 10−3 4.15 · 10−4 1.26 · 10−2 2.20 · 10−3 3.90 · 10−4

δ[5] −9.87 · 10−4 −2.08 · 10−4 −6.98 · 10−5 −1.26 · 10−3 −3.12 · 10−4 −6.76 · 10−5

∆MP2 99.10 99.86 99.99 98.64 99.80 99.98
∆CCSD 99.99 100.04 100.03 99.66 99.96 100.02
∆CCSD(T) 99.62 99.96 100.02 99.27 99.89 100.01
∆(T) 91.50 98.24 99.70 87.96 97.99 99.66
∆[4] 91.13 98.16 99.66 87.56 97.82 99.61
∆[5] 84.03 96.64 98.87 82.24 95.59 99.05
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Figure 6.19: CCSD (∆ECCSD
PQ : blue circles) as well as fourth- and fifth-order (T) (∆E

[4]
PQ/∆E

[5]
PQ: green

squares and red crosses, respectively) contributions to the CCSD(T) pair interaction energy as a function
of the interatomic pair distance for systems 2b and 3b.
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which may be screened away in a DEC–CCSD calculation — because their energy contribu-
tions are negligible in comparison with the intrinsic DEC error — may also be omitted from a
DEC–CCSD(T) calculation without compromising the overall accuracy of the calculation. In
fact, since the (T) contribution to the total pair interaction energy is much smaller on average
than the corresponding CCSD contribution, one could even consider more elaborate schemes
where individual pairs are preordered according to their estimated energy contribution (or in-
teratomic distance) and partitioned into three different levels; at the first level (the smallest
energy contributions), the pair interaction energies are neglected altogether, while at the two
following levels, they are evaluated at the CCSD and CCSD(T) levels of theory, respectively.

6.5 Summary and outlook

In this section we given a simpler and more general analysis of the locality of the MP2 and
CCSD amplitude equations than in Ref. 39 and we have argued for why the (T) correction and
the CCSD energy may be obtained from the same space. We have used this knowledge to design
an algorithm, which despite its simplicity is able to identify the required fragment spaces to
obtain the single fragment energy to within the FOT precision for the occupied partitioning
scheme. This was demonstrated numerically for MP2 and CCSD models. Further, it could
be demonstrated that the (T) correction may indeed be obtained from the same space as the
CCSD energy without compromising the precision of the calculation. For the pair calculations,
we have developed an energy–based screening technique to replace the former conservatively
chosen real–space cutoff and we have shown that the overall precision of the DEC algorithm is
given for all the currently implemented models, DEC–MP2, DEC–CCSD and DEC–CCSD(T),
using the current fragment optimization procedure and the pair–screening. Finally we have
discussed the decay of the (T) pair interaction energy contributions.

In order to obtain molecular properties and gradients, the virtual partitioning scheme is of
central importance, and it is therefore our current research interest to develop a strategy for
obtaining the single fragment space for both the occupied and virtual partitioning schemes. We
have also given a suggestion for the rigorous determination of these spaces, but no numerical
data has been obtained to support this idea at the time of writing.
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Appendix B

Details for the identification of single
fragment and pair fragment spaces

B.1 Defining locality of molecular orbitals and single fragment
extents

Until now, the locality discussion has taken place at the MO level, but the underlying AO basis
needs to be truncated i) in order to reduce the cost for the fragment calculations, and ii) to
arrive at a truly linear scaling algorithm. It is the purpose of this section is to describe how a
set of AOs is selected for a fragment calculation, and how the original MOs are approximated by
MOs in the restricted space. The procedure described here is very similar to the one described
in Section 6.1 of Ref. 39. However, there are subtle differences, and for completeness the current
implementation of the procedure is summarized here.

A localized HF MO φPr is assigned to the atomic site P where its atomic Löwdin charge
QLatom is largest. Even though the bulk of φPr is confined to a small volume of space, φPr has
small expansion coefficients on AOs located some distance away from P . The HF orbital φPr ,

φPr =
∑

µ

χµc
P
µr, (B.1)

may be approximated in the following way

φ̃Pr =
∑

µ̃

χµ̃c̃
P
µ̃r, (B.2)

where the µ̃–summation is restricted to AOs which in some sense are neighboring the atomic
site P (to be detailed below). The expansion coefficients of φ̃Pr may be determined from a least
squares fit, i.e., by minimizing the function f(c̃P ),

f(c̃P ) =‖ φ̃Pr − φPr ‖= 〈φ̃Pr − φPr |φ̃Pr − φPr 〉, (B.3)

with respect to the c̃ coefficients. This gives the expansion coefficients

c̃Pµ̃r =
∑

ν̃η

(S̃)−1
µ̃ν̃ Sν̃ηc

P
ηr, (B.4)

where the dimensions of the overlap matrices are defined by the restrictions that are imposed
on the AO indices, i.e.,

S̃µ̃ν̃ = 〈χµ̃|χν̃〉, (B.5)
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Sν̃η = 〈χν̃ |χη〉. (B.6)

We now describe how the µ̃-summation in Eq. (B.2) may be restricted to exclude the tail region.
For each MO φPr , a priority list of AOs may be generated by quantifying the importance of each
AO χµ according to its Löwdin charge QLµ . Going through this list we include AOs until the
sum of Löwdin charges is larger than a given threshold δ,

1−
∑

µ̃

QLµ̃ < δ, (B.7)

where δ is a small prefixed number. This procedure defines a set of AOs for each MO φPr , which
we denote the orbital extent {φPr }. The union of orbital extents for all MOs in the effective
orbital space [P ]EFF is denoted the single fragment extent {P}. The {P} space defines the set
of AOs used to describe the MOs in single fragment P , i.e., it defines the restriction on the
µ̃-summation in Eq. (B.2). Thus, all MOs in the fragment are fitted using the same set of AOs
to ensure a uniform description. We note that a screening of atomic centers in accordance with
Eq. (B.7) was used by Boughton and Pulay [106] for the occupied HF orbitals as a completeness
criteria for the assignment of local excitation spaces.

In practice we use δ = 0.05 to define the orbital extents. This might appear to be a very
crude value; however, the effect of approximating the MOs is minor because they are fitted using
the union of all orbital extents. In particular, for the MOs close to site P (large single fragment
energy contributions), the fitting procedure has virtually no effect, while it slightly modfies the
MOs far from P (small single fragment energy contributions). The fitting procedure therefore
has a very minor effect on the single fragment energy. Furthermore, each step of the fragment
expansion in Figure 6.13 not only includes new energy contributions and new coupling effects
by including more MOs, but it also improves the description of the MOs already included in
the previous fragment ({P} is enlarged). The effect of the approximation in Eq. (B.2) is thus
automatically taking into account by the fragment optimization procedure.

B.2 Pair spaces as unions of spaces

Having identified the spaces that are needed to determine the fragments we can use the same
strategy to identify the spaces required to evaluate the pair fragment energies. We will start the
analysis with noting that the carrier integrals of the pair fragment EOS amplitudes (following
the long–range decay mechanism 3) may be orders of magnitudes smaller than the single frag-
ment EOS amplitudes (see Figure 6.8a). During the iterations of finding the MP2 (or CCSD)
solutions, the modifications to the carrier integral contributions are minor, since the coupling
effects (Eqs. 6.24) are of higher order in a Møller-Plesset perturbation analysis, and we may
therefore conclude that the relative coupling effect on the pair fragment EOS amplitudes is the
same as on the single fragment EOS amplitudes.

The pair energy expressions in Eqs. (6.7) and (6.9) allow us to identify the pair fragment
EOS

So,PQEOS = [P ∪Q]2 × P ×Q, (B.8)

Sv,PQEOS = P ×Q× [P ∪Q]2, (B.9)



B.2. PAIR SPACES AS UNIONS OF SPACES 101

where [P∪Q] = [P ]∪[Q] is the space that interacts with P∪Q through non-vanishing Fock matrix
elements. We henceforth use the generic Sx,PQEOS for the two spaces. Note that the EOS may

include long-ranged on-site excitations, e.g. in the t
[P ][Q]
PQ amplitudes, and short-ranged cross-

site excitations, e.g. in the amplitudes t
[Q][P ]
PQ ,t

[P ][P ]
PQ , t

[Q][Q]
PQ , which are negligible if [P ]∩ [Q] = ∅.

We, again, put the analysis for the occupied and virtual partitionings on an equal footing by
introducing the space

SP∪Q1 = [P ∪Q]2 × [P ∪Q]2, (So,P∪QEOS ∪ Sv,P∪QEOS ) ⊂ SP∪Q1 . (B.10)

As for the fragment energies, the amplitudes of the first iteration are set to zero

tabij,1 = 0, (B.11)

trivially leading to ExPQ,1 = ∆ExPQ,1 = 0 and the residual Rabij,1 = −gaibj is restricted to the

EOS Sx,PQEOS . Using Eq. (6.14) we find the amplitudes of the second iteration as

tabij,2 = Rabij,1 ∈ Sx,PQEOS , (B.12)

which enter the (MP2) residual equation

Rabij,2 = −gaibj −
∑

c

tcbij,2Fca −
∑

c

tacij,2Fcb+
∑

k

tabkj,2Fik +
∑

k

tabik,2Fjk; R ∈ SP∪Q2 , t ∈ SP∪Q1 .

(B.13)

Space extensions and couplings are again introduced by the mechanisms described in Eqs. (6.24),
where the coupling occurs either around center P or around center Q. Using that [P ] × Q ⊂
[P ∪ Q]2 ⊃ P × [Q] we may capture the most extended space analogous to the fragment case
(see Eq. (6.26)) by introducing

SP∪Qn = [P ∪Q]2n × [P ∪Q]2n, (B.14)

where Eqs. (B.14) includes the space extensions for any iteration n as Eq. (B.14) for the single
fragment. We initially noted that the carrier integrals of the pair fragment EOS amplitudes were
smaller than for the single fragment case, and since it is reasonable to assume that the coupling
effects have a similar relative effect on these carrier integrals in both cases, this implies that
the pair fragment calculations can be performed in the union of the effective coupling spaces
[P ]EFF and [Q]EFF for fragments P and Q to obtain the pair fragment energy to the predefined
precision. Indeed, the error in the pair fragment calculations, for well–separated pairs, is orders
of magnitude lower as for the single fragments and decreases with the distance between the
atomic centers under consideration as R−6

PQ [38].
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Chapter 7

Parallelization of the DEC algorithm

This chapter summarizes the work of articles 1

In this chapter, we present an algorithm which combines the local correlation philosophy
of the DEC scheme with a massively parallel implementation to enable calculations on large
molecular systems to be carried out on modern super computer architectures. The presented
algorithm employs three levels of parallelization: (1) the different fragment contributions can be
calculated independently (coarse–grained parallelization); (2) each individual DEC fragment cal-
culation can be parallelized over several nodes (medium–grained parallelization), (3) each node
employs OpenMP parallelization over the cores on the node (fine–grained parallelization). These
three levels of parallelization are combined to yield a dynamic job scheduling scheme where ef-
ficient parallelization across thousands of nodes is automatically ensured. The algorithm scales
linearly with system size, exhibits near perfect parallel scalability, removes memory bottlenecks,
and does not involve any I/O. We avoid the use of I/O to follow the recommendations of the
supercomputing community. In short, the presented DEC algorithm removes both time and
memory bottlenecks present in conventional CC implementations.

The performance of the algorithm is tested in terms of MP2 energy calculations on two
systems containing 528 and 1056 atoms (4278 and 8556 basis functions) using 2945 and 5890
nodes, DEC–MP2 density calculations on a system with 611 basis functions, using 256, 512 and
1024 nodes, and a large–scale, low–precision DEC–CCSD(T) calculation on insulin (4433 basis
functions) using 9344 nodes.

In Section 7.1 we summarize some findings from Chapter 6 and describe how the fragment
calculations may be organized such that it is possible to utilize millions of cores on current
supercomputer systems. In Section 7.2.1, we summarize the necessary work for a fragment
calculation in a DEC context, and finally, in Section 7.3, we evaluate the performance of the
DEC-CC algorithm before presenting some concluding remarks in Section 7.4.

7.1 Overview of the DEC scheme

In Figure 7.1a, we give an overview of the DEC scheme. First, a set of local HF orbitals is
determined. Second, the orbital spaces entering the single fragment calculations are optimized
according to the given FOT as described in Section 6.3. Third, the pair fragment calculations
are carried out using unions of orbital spaces from the single fragment calculations and finally,
all fragment energy contributions are added up to give the final correlation energy.

In a DEC calculation, the number of single fragments scales linearly with system size, while
the number of pair fragments formally scales quadratically with system size. In Section 6.3.2,
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Figure 7.1: Overview of the DEC scheme (left) and the parallelization of the time dominating pair
fragment calculations (right). Left: First, a set of local orbitals is obtained, then the fragment spaces
are generated using the procedure described in Section 6.3, then the pair fragment (and single fragment)
calculations are carried out at the desired level of theory, while the collection of results occurs concur-
rently. Right: In the pair fragment calculations, all the fragment sizes are known from the fragment
optimization. The fragment jobs F1, F2, . . . are then ordered according to size in descending order on
the global master process. A set of computing slots is used to execute the jobs. The number of nodes
in each slot is written in a parenthesis. Whenever a slot finishes its job, it asks for a new job from the
master. In case the new job is too small to satisfy the efficiency criterion in Eq. (7.1), the slot divides
itself into two new independent slots.
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(b) Parallelization of the DEC scheme.

we have described an algorithm which enables a prescreening of the pair fragment energies. The
number of pair fragments to consider therefore scales only linearly with system size. It is clear
from Figure 7.1a that the single fragment calculations as well as the pair fragment calculations
may be run independently on different nodes of a large super computer. In Section 7.2.1, we
detail how the individual fragment calculations may also be parallelized.

In Figure 7.1a, it is further indicated that the MP2 correlation electron density can be
determined using the DEC–MP2 scheme. This evaluation involves the Lagrangian correlation
energy as described in Ref. 102, and will not be discussed here.

7.2 Parallelization of the DEC scheme

Let us now discuss how the initially mentioned parallelization levels are combined to yield an
efficient dynamic scheme for DEC-CC calculations. In Section 7.2.1, we start with giving some
general remarks about the medium– and fine–grained levels of parallelization without going into
the details which they are model specific. In Section 7.2.2, we describe the model–independent
coarse–grained level of parallelization which is inherent in the DEC method.
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7.2.1 The medium–grained level of parallelization in a DEC calculation

The parallelization at the fragment level in a DEC–CC calculation is the same as for conventional
CC calculations, and it is beyond the scope of this Section to provide a detailed description of the
implementation. It has been discussed in Ref. 42 how an MP2 calculation may be parallelized
on the fragment level in order to be conservative with the memory consumption and to obtain
the required intermediates for the energy and density. It has been discussed in Part I how
a CCSD calculation may be parallelized for the execution numerous nodes, and, in fact, the
algorithm described in Chapter 4 is used in a DEC context. It is also beyond the scope of this
Section to describe how the (T) correction to the CCSD energy may be parallelized. For the
conceptual understanding, it may suffice to say that the kernel of all these models consists of
local data sorting and contractions mediated by dgemms, while large quantities may or may not
be stored in PDM and loaded using one–sided MPI routines (see Figure 7.2 and Chapter 3).

The medium level of parallelization occurs on a subset of all available nodes, referred to
as a slot. One node in the slot is the local master while the rest of the nodes in the slot are
the local slaves. A fragment calculation is initialized with the local master asking the global
master node for a job, which involves the communication of two integers in an MPI send–
receive style within the global MPI group of nodes. Upon receiving the job identifier, the local
master sets up the fragment, and wakes up the slaves for the heavy work (Initialization, in
Figure 7.2). For all models, there exists a loop with a number of tasks to do (ntasks), which may
be distributed among the nodes within a slot. After finishing their assigned chunk of work, the
data is collected on the local master, and the local slaves return to their waiting position (Work
phase, in Figure 7.2). The local master calculates the (pair) fragment energy (and collects
necessary intermediates for the calculation of the density, if requested) and contacts the global
master to pass along the fragment data and ask for a new job (Finalization, in Figure 7.2).

In the work phase, a reasonably efficient parallelization is obtained only if the number of
tasks (ntasks) is larger than some integer Mmodel > 1 times the number of nodes in the slot
(nnodes). The integer Mmodel is a (predefined) heuristic number and model dependent, but in
general we may write the efficiency criterion as

ntasks > nnodes ·Mmodel, Mmodel > 1. (7.1)

Let us finally comment on the solution of the amplitude equations in Eq. (1.30) for the
individual fragment calculations. The locality analysis in Chapter 6 demonstrates that the
amplitudes needed to determine the single fragment energies for atomic site P — i.e., EoP and
EvP — may be determined by solving amplitude equations in a local orbital fragment space
(see Figure 6.6). The AOS for a pair fragment PQ is obtained as the union of AOSs for single
fragments P and Q (see Appendix B.2). For MP2 and the (T) correction, we may avoid solving
Eqs. (1.37) and (1.65) using an iterative algorithm, by transforming the orbital space of a given
fragment calculation to a fragment–canonical (or pseudo–canonical) basis, in which the fragment
Fock matrix assumes a diagonal form. In this basis, the MP2 doubles and (T) triples amplitudes
may be calculated using Eqs. (1.39) and (1.58) directly, and then upon transformation to the
local basis, the fragment energies may be evaluated. However, also when solving the CCSD
equations iteratively, it is beneficial to transform Eq. (1.30) to a fragment–canonical basis,
as explained in Chapter 2. When a fragment CCSD calculation has converged, the CCSD
amplitudes are transformed to the local basis, where the EOS amplitudes can be extracted and
the fragment energy evaluated.
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Figure 7.2: Illustration of a fragment job calculated using a slot with 5 nodes (1 local master and 4
local slaves). A job identifier is sent from the global master to the local master, which then performs
the calculation together with the local slaves and sends back the calculated fragment data to the global
master. The initial and final steps together with a non-ideal job distribution in the work phase lead to
a local loss of efficiency illustrated with dotted lines.
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7.2.2 The coarse–grained level of parallelization in a DEC calculation

The coarse–grained level of parallelism in the DEC algorithm is a master–slave approach, where
one global master node has many associated slots (groups of slave nodes) over which independent
chunks of work, i.e. fragment calculations, may be distributed. First, the global master orders
the fragment calculations according to size with the largest fragments first. This gives the
ordering F1, F2, . . ., FA, FB, . . ., FY, FZ shown in Figure 7.1b. The computational nodes are
grouped into slots (of, e.g., 64 nodes) and the master distributes the first fragment calculations
in the list to these slots. When a slot finishes its fragment calculation, it sends a message to
the master node to receive a new fragment, say, fragment FB. If Eq. (7.1) is not satisfied for
fragment FB (i.e., ntasks,FB ≤ 64M), then the slot divides itself into two new slots (of, e.g.,
size 32 each). One of the new slots will execute fragment FB, while the other new slot will
ask the master for a new fragment (fragment FC). This scheme is continued until all fragments
are done. In this manner, the slots automatically divide such that Eq. (7.1) is satisfied for all
fragments to ensure efficient medium–grained parallelization.

It is apparent from Figure 7.1b that there will also be a global loss of efficiency at the end
of the calculation as shown by the dotted vertical lines. This happens when a given slot has
finished a fragment job and all remaining fragment jobs have already been distributed by the
global master. The nodes of the finished slot will then have to wait until all other slots are done
with their respective jobs.

It remains to point out the weaknesses of this type of job distribution. One major problem
is that the global loss may be dominated by a single fragment calculation, if it is very big in
comparison to the other fragments. The other main weakness is observed in the limit of very
small fragment jobs, where a lot of local masters will request a job at the same time (after all the
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Figure 7.3: Molecular systems used for the MP2 energy and density study.

groups are split down to one node each), since then there will be a communication bottleneck
in the job distribution as the global master cannot satisfy the requests. It is a current research
goal to avoid the second bottleneck by a more dynamic job distribution based on one–sided
MPI communication.

In summary, the scheme in Figure 7.1b allows for the resources required for the individual
fragment calculations to be adjusted to the actual needs and at a minimal loss of efficiency. In
Section 7.3, we discuss the efficiency of DEC-CC calculations on large molecular systems. In
particular, we analyze the connection between local and global losses.

7.3 Results

In order to analyze the DEC algorithm developed in this Chapter, we will present individual
calculations which have been performed at different levels of theory and on different molecules.
For all presented calculations, a development version of the LSDALTON [29] program was
used.

7.3.1 DEC–MP2 energy and density calculations

The set of pair calculations in Figure 7.1a is the time-dominating step in a DEC–MP2 cal-
culation, and we therefore focus only on this step here. We note that, since the fragment
optimizations in Figure 7.1a involve only energy calculations, it is necessary to repeat single
fragment calculations along with the pair calculations when also the MP2 density is of inter-
est. Thus, the list of fragments in Figure 7.1b contains both optimized single fragments and
pair fragments listed according to size. In the calculations presented, we have used a FOT of
10−4 a.u. and instead of the energy–based pair screening procedure described in Section 6.3.2,
a distance cutoff of 10 Å was used.
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These calculations were carried out on Titan, running with two MPI processes per Titan
node, i.e., 1 MPI process per NUMA node, which then employs OpenMP parallelization over 8
cores (see page 133). Thus, nnodes in Eq. (7.1) refers to the number of NUMA nodes, and for the
remainder of the MP2 subsection, the ”number of nodes” will implicitly refer to the number of
NUMA nodes (which is twice the number of actual Titan nodes). We report calculations using
5890 nodes (47120 cores) and 11780 nodes (94240 cores). The accelerators present on Titan
were not employed.

The systems under investigation are shown in Figure 7.3. System 1 (”nanospresso”) contains
a caffeine molecule surrounded by 168 water molecules in a box with dimensions ≈ 1.5nm ×
1.5nm× 1.2nm, giving a total of 528 atoms (4278 basis functions using the cc-pVDZ basis set).
System 2 (”nanospresso doppio”) corresponds to two units of system 1 and thus contains 1056
atoms (8556 basis functions). Both geometries were allowed to relax in a force field using the
default settings of the Avogadro program (v. 1.0.3) [107].

Time-to-solution

The most important property of a large-scale massively parallel code is that it provides a short
time-to-solution (TTS). In our case, this is the time it takes from the first fragment calculation
in Figure 7.1b is started to the last fragment calculation is finished (measured by the global
master). Table 7.1 gives the time-to-solution for systems 1 and 2 for 5890 and 11780 nodes.

By doubling the number of nodes, the TTS would ideally be halved. In practice, the TTS is
decreased by a factor 0.56 (0.93/1.66) for system 1 and by a factor 0.53 (2.37/4.49) for system
2. Thus, the scheme in Figure 7.1b performs very well with respect to parallel scaling, although
some deviation from the ideal behavior is observed.

System 2 is twice as large as system 1 measured by the number of atoms. In the presented
calculations, we omitted all pair fragments separated by more than 10 Å. Assuming that all
atomic sites P are involved in the same number of pair fragments, this leads to linearly scaling
number of pair fragments. However, in practice atoms at the edges of the water box will form
fewer pairs than atoms at the center of structure. Since the relative amount of ”edge atoms” is
larger for 1 than for 2, the number of pairs to consider for 2 will be slightly larger than twice
the number of pairs for system 1. In practice there are 7136 fragments for system 1 and 16151
(= 2.3× 7136) fragments for system 2. Ideally one would thus expect that, for a fixed number
of nodes, the TTS is 2.3 times larger for 2 than for 1. From Table 7.1 it is seen that the actual
TTSs for 2 are 2.7 (=4.49/1.66) and 2.5 (2.37/0.93) times larger for 5890 and 11780 nodes,
respectively. When increasing the system size, the TTS is thus roughly scaled by the relative
increase in the number of fragments.

The key points of this chapter have now been demonstrated: to a very good approximation
(1) the scheme in Figure 7.1b allows for the TTS to be decreased in proportion to the number
of nodes applied, and (2) the TTS scales linearly with system size. We now analyze the reasons
for deviations from ideal behavior.

Local and global losses

Two sources of loss are present in the MPI parallelization of the DEC–MP2 scheme compared
to a calculation on a single node (employing OpenMP, but not MPI parallelization): the local
loss of the individual fragment calculations illustrated in Figure 7.2 and the global loss at the
end of the calculation shown in Figure 7.1b. (Furthermore, there are losses associated with the
OpenMP parallelization of each MPI process, which will be discussed in the following section).
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Table 7.1: Timings for systems 1 and 2 for different number of nodes. All calculations were carried
out using M = 3 in Eq. (7.1).

System #fragments #nodesa TTSb(hours)

1 7136 5890 1.66
1 7136 11780 0.93
2 16151 5890 4.49
2 16151 11780 2.37

a Number of NUMA nodes. Each NUMA node runs one
MPI process which employs OpenMP parallelization
over 8 cores.

b Time-to-solution for all fragment calculations.

Table 7.2: MPI-associated loss compared to a calculation on a single node (employing OpenMP but
not MPI parallelization) for systems 1 and 2 for different number of nodes.

System #nodes Local lossa(%) Global lossb(%) Total lossc(%)

1 5890 18.4 5.2 23.5
1 11780 17.4 14.6 32.0
2 5890 26.6 1.9 28.4
2 11780 27.0 5.3 32.3

a Percentage loss within the fragment slots (Figure 7.2).
b Percentage loss associated with idle time at the end of the calculation and MPI

communication between global master and local slaves (Figure 7.1b).
c Sum of local and global losses.

In Table 7.2, we present the local and global loss for the calculations in Table 7.1. Consider
first the calculations for system 1. Clearly, when the number of nodes is increased, the local loss
stays relatively constant, while the global loss increases. This happens because the individual
fragment calculations (Figure 7.2) are virtually unchanged, while the global distribution of
jobs (Figure 7.1b) inevitably gets less homogenous when the same number of fragments are
distributed among twice as many nodes. The same feature is observed for system 2.

Table 7.2 also reveals the unpleasant feature that the local loss increases when the system
size increases. A closer inspection of the individual steps shows that the difference in local
loss between system 1 and 2 stems from the fragment initialization (see Figure 7.2), where the
fragment data is extracted from data for the full molecule (e.g., the local Fock matrix F′local is
extracted from the full molecular Fock matrix F). In fact, the fragment initialization for system
2 on average takes four times as long as the similar step for system 1, which is consistent with
the fact that the matrix dimensions for system 2 are twice as large as for 1.

Clearly there is room for improvements to reduce the local and global losses. However, the
main point remains that the massively parallel DEC–MP2 scheme scales very well both with
respect to the number of nodes and with respect to system size.
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Floating point operations and OpenMP parallelization

We have measured the number of floating points operations (FLOP) for the calculations in
Table 7.1 using the PAPI library [108]. The results are given in Table 7.3. As expected the
ratio between the total number of petaFLOP for the two systems (486/191=2.5) corresponds
roughly to the ratio between the number of fragments (16151/7136 =2.3, see Table 7.1).

Table 7.3 also contains the average number of gigaFLOP per second (GFLOP/s) per core.
The ideal value is 2.2GHz × 4 operations/core = 8.8 GFLOP/s per core (obtained if all cores
perform only floating operations during the entire calculation). We are thus roughly an order of
magnitude away from the ideal value. This happens (i) due to the local and global loss effects
discussed in Section 7.3.1 (MPI parallelization), (ii) because not all operations involved are
floating point operations, and (iii) because the OpenMP parallelization is not ideal. To analyze
the two latter effects, we report timings and GFLOP/s per core for three selected fragment
calculations of different sizes using 1 and 8 OpenMP threads (Table 7.4). In Table 7.4, the time
associated with the dotted lines in Figure 7.2 (the local loss) have been subtracted from the
effective times when calculating the average GFLOP/s per core. Thus, the timings in Table 7.4
solely describe losses of types (ii) and (iii).

Considering first the calculations using a single OpenMP thread in Table 7.4 (loss type (ii)
above), it is seen that about 2-5 GFLOP/s per core is observed for the selected fragments.
These numbers deviate from the ideal value of 8.8 GFLOP/s per core because several steps in
the MP2 algorithm do not use floating point operations. Such steps include the many data
sortings, which ensure that the data is consecutive in memory before the matrix multiplications
are performed, and the extraction of fragment data from full molecule data. Table 7.4 also
reveals that the GFLOP/s per core is lower for larger fragments. The primary reason for this
is the many skinny matrix multiplications, where the summation index runs only over a small
set of indices, while the total array is quite large. Such matrix multiplications are not handled
as efficiently by dgemm as is the case for square matrices. This effect is more pronounced for
larger fragments.

Regarding the OpenMP parallelization (loss type (iii) above) the timings in Table 7.4 show
a speed-up of about 2.5 for eight OpenMP threads compared to a single OpenMP thread, which
is quite far from the ideal speed-up of 8. One reason for this is the node configuration on Titan,
since there are only 4 floating point units per NUMA node (see page 133) and thus the ideal
speedup for a FLOP heavy code is closer to 4 on this system using all cores. In fact, using more
than 4 OpenMP threads with a FLOP heavy code may even lead to an efficiency reduction, as
the 8 integer cores compete for the 4 floating point units. The effect of this has not been assessed
in this study. Other reasons include that the data sorting (at the time running the calculation)
and the extraction of fragment data not being OpenMP parallelized, several OpenMP loops
that need to be started up and shut down again when calling a series of dgemms, and dgemms
that are not OpenMP parallelized as efficiently for the often encountered skinny matrices as for
square matrices. For these reasons the GFLOP/s per core is significantly higher for a single
OpenMP thread than for 8 OpenMP threads.

The DEC–MP2 energy and density

Although the main focus in this chapter is on the performance of the massively parallel DEC–
MP2 scheme in Figure 7.1b, let us briefly discuss the calculated MP2 correlation energy and
correlation density for the molecules in Figure 7.3.

As mentioned above, the calculations in this investigation were carried out using a FOT of
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Table 7.3: Number of floating point operations for systems 1 and 2 for different number of nodes.

System #nodes Tot. petaFLOPa GFLOP/s per coreb

1 5890 191 0.68
1 11780 191 0.60
2 5890 486 0.64
2 11780 486 0.60

a Total number of petaFLOP for all fragment calculations.
b Average number of GFLOP per second per core.

Table 7.4: Timings and GFLOP/s per core for three selected fragments using either 1 or 8 OpenMP
threads. All calculations were carried out on system 2.

#occa #virtb #OpenMP threads time(s)c GFLOP/s per cored

24 121 1 504 5.63
24 121 8 213 1.63
52 162 1 840 3.42
52 162 8 350 1.00
77 351 1 2730 2.10
77 351 8 931 0.77

a Number of occupied AOS orbitals in fragment.
v Number of virtual AOS orbitals in fragment.
c Time measured by local master.
d Number of GFLOP per second per core calculated using effective times, where

the MPI associated losses in Table 7.2 have been removed (see text).

Table 7.5: Calculated DEC correlation energies (a.u.) and associated error estimates. Also shown is
the trace of the correlation density matrix divided by the number of electrons.

System Eo
corr Ev

corr LMP2
corr ∆EDEC

1 %Eest
corr Trρ/Nel

1 -37.4246 -37.4299 -37.4240 0.0060 99.98 −4.0 · 10−6

2 -74.8824 -74.8943 -74.8819 0.0123 99.98 −4.2 · 10−6
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Table 7.6: DEC-CCSD(T) calculation for insulin using the 6-31G basis and a 10−3 a.u. energy error
threshold.

Number of Titan cores 149504
Time-to-solution (hours) 9.03
Global MPI loss (%) 0.97
Local MPI loss (%) 2.15
Total MPI loss (%) 3.12

10−4 a.u., which controls the relative rather than the absolute error of the calculated DEC–
MP2 correlation energy. We therefore expect calculations carried out using the same FOT
value to exhibit roughly the same relative (size-intensive) errors. It is very challenging – if at
all possible – to carry out a conventional MP2 calculation on systems as large as 1 and 2, and
the DEC fragmentation errors can therefore not be quantified by comparing to a conventional
MP2 calculation, as in Section 6. However, the DEC–MP2 error may be estimated evaluated
using

∆EDEC
1 = max(Eocorr, E

v
corr,LMP2

corr )−min(Eocorr, E
v
corr,LMP2

corr ), (7.2)

including the Lagrangian contribution LMP2
corr . The percentage of the correlation energy recovered

by the DEC calculation can be estimated as [109]

%Eest
corr =

|LMP2
corr | −∆EDEC

1

|LMP2
corr |

· 100%. (7.3)

In Table 7.5, we present the calculated correlation energy using the three partitioning
schemes along with the estimated errors of Eqs. (7.2) and (7.3) for systems 1 and 2. Since
the correlation energy is a size-extensive property, it is roughly doubled when the system size
is doubled. The absolute error (∆EDEC

1 ) also scales with system size because the errors of the
individual fragment energy contributions add up when the correlation energy is calculated [109].
Since the absolute error is size-extensive, the percentage of the correlation energy (%Eest

corr) re-
covered by the DEC calculation is a size–intensive property. Systems 1 and 2 therefore recover
the same percentage of the correlation energy (%Eest

corr = 99.98%). Another size-intensive error
measure given in Table 7.5 is the trace of the calculated MP2 correlation density matrix ρ
divided by the number of electrons, Trρ/Nel, which is zero in the limit of a full calculation.
Also this quantity is roughly the same for systems 1 and 2.

It is instructive to compare the results in Table 7.5 to those of a recent DEC–MP2 calculation
on the insulin molecule using the same FOT value [109]. For insulin we found %Eest

corr = 99.95%
and Trρ/Nel = −7.4 · 10−6. The relative error measures for insulin are thus of similar size as
for systems 1 and 2, confirming that the FOT defines the relative error of the calculation.

7.3.2 Large scale DEC-CCSD(T) insulin calculation

We have further carried out a DEC-CCSD(T) calculation for the insulin molecule using a 6-31G
basis (4433 basis functions), the frozen core approximation, a FOT of 10−3 a.u., and the pair
screening mechanism was deactivated. The results of this calculation are rather meaningless,
but, most importantly, we have been able to demonstrate that the DEC code also performs well
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at a higher level of theory, despite the higher complexity of the individual fragment calculations.
The calculation was performed using 149504 Titan cores (without accelerators) where the time
determining part took 9 hours. The results are summarized in Table 7.6. From the scaling
behavior of the DEC-MP2 calculations (Table 7.1) and the very small global loss in the MPI
parallelization of about 1% in the DEC-CCSD(T) calculations (Table 7.6), we see that the
coarse–grained (or global) level of parallelization is indeed independent of the deployed level
of theory. For the medium–grained (or local) level of MPI parallelization of a single fragment
DEC-CC calculation, ensuring load balancing is inherently more difficult for higher levels of
theory and it thus adds up to a larger total loss than the coarse–grained parallelism.

7.4 Conclusion

We have presented a massively parallel algorithm for the calculation of DEC–MP2 and DEC–
CCSD(T) correlation energies and DEC–MP2 correlation densities of large molecular systems.
The resulting algorithm scales linearly with system size, exhibits near perfect parallel scalability,
removes memory bottlenecks, and does not involve any I/O. The algorithm is ideally suited for
calculations on large supercomputer architectures as demonstrated by several calculations. Most
importantly, the algorithm provides a short time-to-solution for large-scale calculations on super
computer architectures.

The presented algorithm involves three levels of parallelization. At the coarse–grained level,
the different DEC fragment calculations are distributed among a number of slots each containing
a given number of nodes. At the medium–grained level, each slot carries out its own set of
fragment calculations, where each fragment calculation is parallelized over the nodes within the
slot. At the fine–grained level each node employs OpenMP parallelization to utilize all cores on
the node. The fragment calculations are distributed to slots in a dynamic fashion where the slot
sizes are automatically adapted to the fragment sizes to ensure efficient use of the resources.
Naturally, there are some losses associated with the massively parallel DEC scheme compared
to a sequential implementation. These losses have been analyzed and possible improvements
have been suggested. However, the main point remains that the massively parallel DEC scheme
scales very well both with respect to the number of nodes and with respect to system size, and
may be run efficiently independent of the wave function model.

In conclusion, the algorithm satisfies the following criteria which are very important from a
practical point of view: (1) for a given molecular system, the time-to-solution is roughly halved
when the number of nodes is doubled, (2) for a given number of nodes, the time-to-solution
is roughly doubled if the system size is doubled, and (3) the fragmentation errors introduced
compared to a conventional calculations are controlled by the FOT and may be made arbitrarily
small. The short time-to-solution for a single point calculation is particularly important for
structure optimizations where many single point calculations are required.
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Chapter 8

Exploring the use pair–natural–orbitals in a
DEC–CC calculation

This section describes unpublished work

Introduction

In the previous chapters, it has been discussed how the fragment spaces in a DEC calculation
may be chosen in order to retain error control, how the DEC algorithm may be set up such
that the independent fragment calculations can be run on a large supercomputer, and how
this development may lead to a reduction of the time–to–solution of a given problem. It has
not been discussed that, despite the reduced cost and time–to–solution of the DEC algorithm,
the fragmentation strategy naturally leads to redundancies in the obtained parameters, and
therefore a huge (constant) overhead is associated with the DEC algorithm. Also, it has not
been discussed that even a fragment calculation may become too large to be treated it with the
conventional CC methods we have discussed so far. In this section, we will discuss a strategy,
which may be used for tackling both of these problems, by reducing the number of parameters
to be determined at the fragment level.

In contrast to DEC, some other approaches, like the DLPNO-CCSD(T) [110] approach,
obtain the WF parameters by solving one equation for the full molecule, instead of many small
fragment equations [97,110–112]. While this usually makes the code difficult to parallelize over
many nodes, the pre–factor of a large–scale calculation becomes rather low, in fact so low that
there is virtually no crossover with a canonical CCSD(T) algorithm [110].

On the other hand, the DEC approach has the advantage that it may be combined with many
of the strategies developed for obtaining the solution to the conventional problem, by applying
the strategies at the fragment level. Here, we will investigate the possibility of using a similar
approach as the one presented in Ref. 110 in order to reduce the cost for the individual fragment
calculations, by tailoring the fragment calculation such that only the important amplitudes have
to be calculated.

8.1 Errors and redundancies in a DEC–CC calculation

In Chapter 6 it has been discussed how the fragments in a DEC calculation may be obtained
in a way that the error may be controlled by a single input parameter. By fragmenting the
molecule, and screening pair–fragment contributions, it was possible to arrive at a linear–scaling

115
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algorithm, where each fragment calculation is a conventional CC calculation on a fraction of
the full molecular orbital space, and therefore all the amplitudes in the AOS (see Section 6.2.1)
had to be obtained. Here, we will discuss the individual error sources in a fragment calculation
in order to identify the (sub) sets of amplitudes (of the AOS), which are necessary in order to
obtain the fragment energy to within the predefined precision. For simplicity, we focus on the
occupied partitioning scheme, but for completeness, we note that the following developments
may also be used for the virtual partitioning due to the fact that the virtual orbitals are local
in space. Also, we focus on a single fragment, but the extension of the following discussion to
pair fragments is trivial.

There are three different sources of error associated with the calculation of EoP in Eq. (6.6):

• Error type 1: The ab summation in Eqs (6.6) is restricted to the [P ] space, i.e. contri-
butions outside [P ] are neglected.

• Error type 2: The amplitude equation is solved for amplitudes in the AOS ([P ] ∪ [P ]),
and therefore the amplitudes cannot couple to amplitudes outside the AOS (error type 2
collectively represents the space extension mechanisms 1-4 of Section 6.2.2).

• Error type 3: The underlying MOs are described using approximate MO coefficients in
the single fragment extent {P} as described in Appendix B.1.

When carrying out a fragment expansion step in the fragment optimization procedure described
in Section 6.3, [P ], [P ], and {P} are all increased (see Figure 6.13), and error types 1-3 are
thus all reduced. In practical calculations it is not possible to distinguish these errors, but they
may be analyzed for test systems (see Section 8.2). The important point is that, for each single
fragment, the expansion procedure proceeds in a black box manner until the error in the single
fragment energy (caused by a combination of the three errors) is smaller than the requested
FOT precision. Let us reiterate on the nature of the amplitudes in a single fragment calculation,
since it is of central importance to this section that the amplitudes of the EOS, are obtained
as precisely as possible, as they enter the definition of the single fragment energy in Eq. (6.6).
The rest of the amplitudes in the AOS are needed, to describe the coupling (mechanisms 1-4
of Section 6.2.2) of the EOS amplitudes to their environment accurately. One reason for the
huge overhead of a DEC calculation, thus stems from the fact that the EOS amplitudes of one
single fragment P will enter in the AOS of several other single fragments as coupling amplitudes
(and/or the same AOS amplitudes are present in several fragments), where they have to be re–
determined. The role of these amplitudes in a single fragment calculation for the fragments P
and Q is thus very different, e.g. the EOS amplitudes of fragment P are coupling amplitudes
of fragment Q, and it would be desirable to treat these amplitudes differently. Furthermore, an
attractive design feature of the fragment space would be to express the fragment calculation in
(a) set(s) of orbitals that allow for an as compact as possible representation of the important
amplitudes for the given single fragment. How to achieve both is the focus of the next section.

8.2 Fragment reduction using fragment-adapted orbitals

In a first step, let us focus on finding a compact representation for the EOS and postpone the
discussion about the coupling amplitudes. Assume that the fragment expansion procedure for
single fragment P has been converged for the given FOT to yield a set of occupied AOS orbitals
[P ] and a set of virtual AOS orbitals [P ], both of which are represented in terms of localized
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HF orbitals. In this section we analyze a possibility for reducing the virtual orbital space
and thereby illuminate different behaviors of the MP2 and CCSD models in a local correlation
context which may ultimately lead to a more efficient DEC code.

The single fragment energy resulting from the fragment expansion procedure Eo,conv
P is

invariant with respect to a unitary transformation of the virtual AOS orbitals [P ]. The ultimate
goal of this section is to effectively reduce [P ] without compromising the precision of Eo,conv

P .

8.2.1 Virtual fragment-adapted orbitals

The strategy that will be used to reduce the [P ] orbital space is based on pair natural orbitals
(PNOs) and similar constructs, and we therefore briefly summarize the construction of PNOs
here. The PNOs for the (i, j)th occupied orbital pair, where i may equal j, are obtained by
diagonalizing the pair-specific virtual density matrix ρ(ij) for pair (i, j) [95,113]

ρ
(ij)
ab =

∑

c

(t̃acij t
bc
ij + t̃caij t

cb
ij ) (8.1)

ρ(ij)d(ij) = η(ij)d(ij), (8.2)

where d(ij) is a unitary matrix, η(ij) is a diagonal matrix, and

t̃abij =
1

1 + δij

(
4tabij − 2tbaij

)
. (8.3)

Usually, the amplitudes used in Eq. (8.1) are obtained from an approximation to CID am-
plitudes [114]. For both, simplicity and conceptual reasons, we have chosen the amplitudes
entering Eq. (8.1) to be the exact MP2 amplitudes, independent of the target CC model. This
means, it is more expensive to obtain these amplitudes, which is not of importance in a proof

of concept implementation. Note that it is possible to define an analogous ρ
(ab)
ij if local virtual

orbitals are available.

The matrix of eigenvectors d(ij) defines the transformation from local orbitals {φ} to PNOs
{ψ(ij)},

ψ
(ij)
ā =

∑

b

φbd
(ij)
bā . (8.4)

The PNOs {ψ(ij)} are orthogonal among each other, but the PNOs for pair (ij) are in general
not orthogonal to the PNOs for pair (kl) (where k 6= i and/or l 6= j). Listing the eigenvalues
{η(ij)} in decreasing order defines a list of PNOs ordered according to their importance for the
MP2 density, where the largest eigenvalues represent the PNOs with the largest amplitudes tabij
(and thus the largest correlation energy contributions involving φi and φj). More generally, the
set of natural orbitals is the set of orbitals which leads to the most compact representation of
the wave function according to various measures [115,116]. This compact representation allows
for discarding a large set of orbitals (and hence parameters associated with these), based on the
eigenvalues in Eq. (8.2), with tunable precision.

In the DEC scheme we group local orbitals by assigning them to atoms as described in
Chapter 6. For example, for the determination of EoP (EoPQ) in Eq. (6.6) (Eq. (6.7)) the central
orbitals φi, φj are the ones where i, j ∈ P (i ∈ P , j ∈ Q and j ∈ P , i ∈ Q). For a given single
fragment P (pair fragment PQ) we therefore define the DEC EOS equivalents of Eqs. (8.1)-(8.4)
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as

ρ
(Pv)
ab =

∑

ij∈P

∑

c∈[P ]

t̄acij t
bc
ij (a, b ∈ [P ]) (8.5a)

ρ(Pv)d(Pv) = η(Pv)d(Pv) (8.5b)

ψ(Pv)
a =

∑

b∈[P ]

φbd
(Pv)
ba (a ∈ [P ]) (8.5c)

t̄abij = 4tabij − 2tbaij (8.5d)

The (Pv) superscript refers to the virtual orbitals of single fragment P (and pair fragment PQ; to
simplify the discussion we, from now on, consider only a single fragment P ), and a and b are local
orbital indices in the virtual AOS generated by the expansion procedure in Section 6.3. Please

note that we may analogously define ρ
(Po)
ij =

∑
ab∈P

∑
k∈[P ] t̄

ab
ik t

ab
jk (i, j ∈ [P ]) for the virtual

partitioning (also for the pair fragments). In analogy with the PNOs, the relative importance
of the orbitals {ψ(Pv)} is dictated by the sizes of the eigenvalues {η(Pv)}. The DEC equivalent
of PNOs in Eq. (8.5c) will be denoted virtual fragment-adapted orbitals (FOs) because they are
specifically adapted to the central occupied orbitals (ij ∈ P ) for each fragment. Thus, when
using FOs in DEC calculations, the localized HF orbitals merely constitute an efficient basis
where the FOs are expanded, rather than representing the actual excitation space, as has been
the case in previous DEC calculations. Throughout this section we assume that the FOs are
listed in order of decreasing eigenvalues. We note that the pre–factor for t̃ in Eq. (8.3) (included
to avoid double counting for i = j in Eq. (8.1)) is not needed in for t̄ in Eq. (8.5d), since double
counting is not an issue with the density matrix definition in Eq. (8.5a).

In Figure 8.1 we present a test calculation to evaluate the performance of the orbitals defined
in Eq. (8.5) (not a practical implementation). The test system is decanoic acid, using the cc-
pVDZ basis [28], where we look at a single fragment energy of fragment P which we have chosen
to be the carbon of the terminal methyl group. For testing purposes, the amplitude equations
were first solved in the full molecular orbital space for MP2 in order to obtain the FO basis.
Then, in a second step, the MP2 and CCD (as a simplified model for CCSD) equations were
solved using the untruncated FO space, and upon transformation to the local orbital space these
amplitudes were used in Eq. (6.2) (untruncated). This reference calculation results of course in
the correct MP2 and CCD fragment energies. To obtain the green (MP2) and red (CCD) curves
in Figure 8.1 (only error type 1) the FO space was truncated after obtaining the amplitudes
in the untruncated FO space and before the transformation of the amplitudes to the local basis
and compared to the correct MP2 and CCD fragment energies. The number of virtual orbitals
obtained for a given truncation parameter is given on the x–axis, and the untruncated virtual
space includes 220 virtual orbitals. The procedure is the same for obtaining the black (MP2)
and blue (CCD) curves (error types 1 and 2), only that the FO space was truncated prior to
obtaining the amplitudes.

Figure 8.1 shows that obtaining the (correct) amplitudes in the untruncated FO space and
then selecting the amplitudes based on the FO threshold leads to a similar convergence of the
single fragment energy error for MP2 and CCD. It is apparent that these amplitudes may be
expressed in a similar compact fashion using FOs, as only about 30% of the virtual orbital
space is necessary to decrease the fragment error to 10−7 a.u. However, when solving the
amplitude equations in the truncated space, only the MP2 model performs well. The reason for
the slow convergence of the single fragment energy error when solving the CCD equation in the
truncated FO space is that many contributions to the CCD residual equations (see Table 1.2)
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Figure 8.1: DEC error analysis for MP2 and CCD, The error in the single fragment energy is plotted
against the number of virtual FOs selected by various truncation parameters, where the error types
discussed in Section 8.1 are present as indicated by the figure legend. In all calculations, all occupied
orbitals and AOs were included. The central atom for the single fragment energy under consideration is
the terminal –CH3 carbon atom of decanoic acid (cc-pVDZ basis [28]). We note that the horizontal axis
goes up to 220 which is the total number of virtual orbitals in the test molecule.
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are discarded, i.e., orbitals, which are connected to sizable amplitudes in the surrounding of
the EOS amplitudes, but only to negligible EOS amplitudes. This occurs because the FOs are
designed only to describe the EOS amplitudes as compactly as possible and not the sizable
amplitudes to which the EOS amplitudes couple strongly through the CCD residual equations.
Neglecting these coupling amplitudes results in an increased error in the fragment energy for
the CCD model.

This demonstrates that a straight forward application of the FOs for CCD and CCSD is
not possible as the EOS amplitudes couple to other amplitudes of the AOS to a greater extent
than in MP2. In the following subsection we will discuss, how to reduce the overall number of
parameters to be determined in a fragment calculation while taking the coupling effects into
account. Specifically, we will investigate how we can combine the FO and PNO approaches
in order to be able to reduce the number of parameters and still incorporate the important
coupling amplitudes.

8.2.2 The combined FO/PNO approach

In this section we will focus on the combining the FO and PNO approaches and explicitly derive
the T1 transformed CCSD equations for FOs/PNOs. The PNO’s are constructed using the
definition of the pair orbital density in Eq. (8.1) and solving for the eigenvalues in Eq. (8.2). The
transformation of a set of local orbitals to a set of pair natural orbitals is then given by Eq. (8.4)

and the matrix elements of the transformation matrix may be written as d
(ij)

ab̄
= 〈φa|ψ(ij)

b̄
〉. To

simplify the notation we drop the symbol φ (ψ) for the local (FO/PNO) basis and rather use
the orbital index, where a bar is added when referring to an orbital from the FO/PNO basis,
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and the space the basis is adapted to, as superscript. An index without bar refers to an orbital
from the local basis. Thus, the set of local orbitals and FOs/PNOs adapted to Pv/i, j are
written as {a} and {ā(Pv)}/{ā(ij)}. The PNOs {ā(ij)} form an orthogonal set (implication of
diagonalizing ρ(ij)) but they are in general not orthogonal to another set of PNOs {ā(kl)} (i 6= k
and/or j 6= l). However, all the virtual spaces discussed here (local orbitals, FOs, PNOs) are
orthogonal to the occupied space, which is used as a common space. Using these different sets
of orbitals, it is possible to extract the largest EOS amplitudes by means of the FO space, as
described in Section 8.2.1, which directly targets the amplitudes entering the single fragment
energy expression in Eq. (6.6). The largest coupling amplitudes may be extracted using the
PNOs, and thus, when solving the amplitude equations their effect may be taken into account.

Using the implications of the diagonalization of ρ(ij) it is fairly straightforward to derive the
T1 transformed PNO–CCSD equations, using Table 1.2 as a starting point. Since the matrices
d(ij) are obtained by solving the eigenvalue equation Eq. (8.2) they are unitary

(d(ij))†d(ij) = 1. (8.6)

We may then write the orbital transformation relations as

|ā(ij)〉 =
∑

a

|a〉(d(ij))aā(ij) =
∑

a

|a〉d(ij)

aā(ij)
, (8.7)

〈ā(ij)| =
∑

a

(d(ij)†)ā(ij)a〈a| =
∑

a

(d
(ij)

aā(ij)
)∗〈a|, (8.8)

|a〉 =
∑

ā(ij)

|ā(ij)〉(d(ij)†)ā(ij)a =
∑

ā(ij)

|ā(ij)〉(d(ij)

aā(ij)
)∗, (8.9)

〈a| =
∑

ā(ij)

(d
(ij)

aā(ij)
)∗〈ā(ij)| =

∑

ā(ij)

d
(ij)

aā(ij)
〈ā(ij)|, (8.10)

where the complex conjugation may be dropped when working with real orbitals. The con-
travariant virtual indices of the amplitudes are transformed as the bras in the upper equations,
as

tā
(ij)b
ij =

∑

a

(d
(ij)

aā(ij)
)∗tabij , (8.11)

tabij =
∑

ā(ij)

d
(ij)

aā(ij)
tā

(ij)b
ij . (8.12)

Here we have used Eq. (8.6). This relation can then be inserted in each of the basis sets defined
by i and j whenever we evaluate the overlap matrices.

The overlap between sets of PNOs There are different kinds of overlap matrices which
become necessary when we split a fragment into spaces of different importance. We decided to
treat the EOS in a special way, since the EOS defines the target amplitudes with i, j ∈ P and
virtual indices a, b ∈ P . In order to reduce the amount of amplitudes within the EOS we have
defined the FO basis {a(Pv)} in Eq. (8.5) where a compact representation of the EOS amplitudes
is obtained. For the coupling spaces we have decided to use the PNO basis {a(ij)}, thus, overlap
matrices between PNO spaces for (ij) and (kl) are needed, and also the overlap of a PNO space
with the FO space. When we derive the CCSD equations we will omit this distinction and only
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use a PNO overlap matrix, as replacing a PNO space with the FO space, in the equations, is a
trivial matter.

The EOS is expressed in a set of FOs and thus the overlap matrix element between the FOs
and PNOs may be written as

S
(Pv),(ij)

ā(Pv)b̄(ij)
= 〈ā(Pv)|b̄(ij)〉 =

∑

ab

(d
(Pv)

aā(Pv)
)∗〈a|b〉d(ij)

bb̄(ij)
=
∑

a

(d
(Pv)

aā(Pv)
)∗d(ij)

ab̄(ij)
, (8.13)

where we have used the orthonormality of the local basis. This equation degenerates to the

matrix element (d
(ij)

ab̄(ij)
)∗ if the local basis is used for the EOS, which may be a suitable choice,

as we will show later. This equation can be written as S(Pv),(ij) = (d(Pv))†d(ij). The exact
same can be derived for the overlap between two PNO spaces, giving S(ij),(kl) = (d(ij))†d(kl),
analogous to the previous expression. As these expressions essentially are the same we will from
now on drop the explicit treatment of the EOS space. Implicitly all the following derivations
hold for any of the spaces defined previously by using the correct overlap matrix. We can
now express any orbital ā(ij) in any basis (kl) by simply inserting the definition of the overlap
matrices after using Eqs. (8.9) and (8.7) (Eqs. (8.10) and (8.8)) consecutively

ā(ij) =
∑

b̄(kl)

b̄(kl)S
(kl),(ij)

b̄(kl)ā(ij)
, (8.14)

Expressing amplitudes in the same way, using relations (8.11) and (8.12) consecutively and
summing over the local index a, leads to

tā
(ij)b
ij =

∑

ā(kl)

S
(ij),(kl)

ā(ij)ā(kl)
tā

(kl)b
ij . (8.15)

Now we have collected all the relations are which may be inserted into the equations in Ta-
ble 1.2 to arrive at the T1 transformed PNO–CCSD expressions. We will begin by deriving
the contribution for one of the terms in the next subsection and then give the T1 transformed
PNO–CCSD equations in Section 8.2.4.

8.2.3 Example derivation from a MP2 residual contribution

Here we show how the contribution ΩE2.2
aibj to the CCSD vector function may be written, using the

PNO representation for all amplitudes. The conventional T1 transformed residual contribution
ΩE2.2
aibj may be written as (see Table 1.2)

ΩE2.2
aibj =

∑

k

tabik
I F̃kj . (8.16)

Since the residual Ωaibj enters the amplitudes tabij of the next iteration directly (see Eq. (2.30)),

it is expressed it in terms of the same PNOs as the corresponding amplitudes, i.e. in the {a(ij)}
basis, as

Ωā(ij)ib̄(ij)j =
∑

ab

(d
(ij)

aā(ij)
)∗(d(ij)

bb̄(ij)
)∗Ωaibj , (8.17)

to obtain it in the same basis as the corresponding amplitudes it enters; also, the residual is
transformed as the amplitudes in Eq. (8.11). In order to arrive at a compact representation for
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all the doubles amplitudes entering this expression, the amplitudes tabik need to be expressed in

the {a(ik)} basis, thus tā
(ik)b̄(ik)

ik is the most compact representation (using Eq. (8.12))

tabik =
∑

ā(ik)b̄(ik)

d
(ik)

aā(ik)
d

(ik)

bb̄(ik)
tā

(ik)b̄(ik)

ik . (8.18)

Using Eq. (8.18) in Eq. (8.16), and transforming ΩE2.2
aibj to {a(ij)}, we obtain

ΩE2.2
ā(ij)ib̄(ij)j

=
∑

ab

(d
(ij)

aā(ij)
)∗(d(ij)

bb̄(ij)
)∗ΩE2.2

aibj ,

=
∑

ab

(d
(ij)

aā(ij)
)∗(d(ij)

bb̄(ij)
)∗
∑

k

∑

c̄(ik)d̄(ik)

d
(ik)

ac̄(ik)
d

(ik)

bd̄(ik)
tc̄

(ik)d̄(ik)

ik
I F̃kj ,

=
∑

k

∑

c̄(ik) ¯d(ik)

S
(ij),(ik)

ā(ij)c̄(ik)
S

(ij),(ik)

b̄(ij)d̄(ik)
tc̄

(ik)d̄(ik)

ik
I F̃kj ,

(8.19)

which could have been obtained by using Eq. (8.15) directly.

8.2.4 The T1 transformed PNO–CCSD vector equations

Following the strategy outlined in the previous subsection, we may express all the terms in
Table 1.2 in terms of PNOs and thus in the most compact representation for all the doubles
amplitudes. Since it is rather straightforward to introduce Eqs. (8.7)- (8.10) we will give the
final expressions.

One minor complication for all terms in Table 1.2, is the occurrence of the T1 integrals,

g̃ā(ij)ib̄(ij)j =
∑

ab

(d
(ij)

aā(ij)
)∗(d(ij)

bb̄(ij)
)∗g̃aibj ,

=
∑

pqrs

∑

ab

(d
(ij)

aā(ij)
)∗(d(ij)

bb̄(ij)
)∗ΛppaΛ

h
qiΛ

p
qbΛ

h
sjgpqrs,

=
∑

pqrs

Ap
pā(ij)

ΛhqiAprb̄(ij)Λ
h
sjgpqrs,

(8.20)

where we have introduced
∑

a

Λppa(d
(ij)

aā(ij)
)∗ = Ap

pā(ij)
. (8.21)

Since the T1 transformation (one way or another) involves the transformation from the full basis
to the PNO space in each iteration this implementation will become rather inefficient. We have
recently learned that the transformations to the PNO basis usually is the most expensive part
in a PNO code and therefore all necessary integrals are usually precomputed and stored. Also,
the resolution of the identity approximation is frequently used to increase the performance.
We will thus not expect the current code to scale well, but we may be able to reduce the
number of parameters to be determined for each fragment in a tailored way, for the energy
(EOS) amplitudes and the coupling amplitudes. Using the strategy from Eq. (8.19) and from
Eq. (8.20) for the all the terms in Table 1.2, we arrive at the expressions given in Figs. 8.2and 8.3.

We have chosen to calculate the singles residual contribution in the basis of the EOS, even
though there is no reason for them to be described in the same compact fashion as the doubles
amplitudes. In fact, we could (and perhaps should) have chosen to use the local basis instead
for the single to rigorously analyze the fragment energy when using the combined FO/PNO
approach.
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Figure 8.2: The explicit T1 transformed PNO–CCSD doubles residual expressions.

ΩA2
ā(ij)ib̄(ij)j

= g̃ā(ij)ib̄(ij)j +
∑

c̄(ij)d̄(ij)

tc̄
(ij)d̄(ij)

ij g̃ā(ij)c̄(ij)b̄(ij)d̄(ij) (8.22)

ΩB2
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∑
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S
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ā(ij)c̄(kl)
S
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(kl)d̄(kl)

kl Bkilj (8.23)

Bkilj = g̃kilj +
∑

c̄(ij)d̄(ij)

tc̄
(ij)d̄(ij)

ij g̃kc̄(ij)ld̄(ij) (8.24)
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= −
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1 +
1

2
P̂ij
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(lj)d̄(lj)

lj g̃kd̄(lj)lc̄(lj) (8.31)

Figure 8.3: The explicit T1 transformed PNO–CCSD doubles singles expressions.
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ΩD1
ā(Pv)i

= I F̃ā(Pv)i (8.35)
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Table 8.1: color and symbol coding for the thresholds used for truncating the PNO spaces Tij (symbols),
and FO spaces TPv (colors).
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8.3 Results

All T1 transformed PNO–CCSD equations have been programmed in an integral–direct al-
gorithm following the algorithm outlined in Chapter 4 in many cases. Since the memory–
conservative integral–direct approach has been chosen (in order to align the algorithm with the
programming paradigms in LSDALTON), the transformations to and between the PNO spaces
render the algorithm unnecessarily expensive. Yet, a useful first glance at the compactness of
the description of the WF in the PNO space could be obtained.

The main reason for introducing the complicated basis set transformations in Figs. 8.2and 8.3
is that the FO and PNO bases may be truncated, by selecting eigenvalues of a certain size
in Eqs. (8.2) and (8.5b) and still capture the main features of the amplitudes. With this
procedure, the number of parameters to be determined compared to a standard calculation
may be reduced drastically, as will be demonstrated in this section. Since we have chosen to
partition the amplitudes into the target EOS amplitudes that directly enter the fragment energy
expressions in Eqs. (6.6) and (6.7), and amplitudes which couple to the EOS amplitudes, there
will be two parameters to be considered, TPv for selecting eigenvalues from Eq. (8.5b), and
Tij for selecting eigenvalues from Eq. (8.2). All the calculations have been carried out on a
set of nodes with 96GB main memory and 12 cores per node on the Grendel cluster using
a development version of the LSDALTON program in order to obtain comparable timings.
The system under investigation was decanoic acid, where the terminal methyl carbon was taken
as atomic center P (the same as for Figure 8.1) and where errors of type 3 are not present.
The number of practically determined parameters in the full calculation (O = 48,V = 220) is
OV + O2V 2 = 111 524 160 ≈ 1.1 · 109, while the number of unique parameters (tabij = tbaji ) for

the full calculation is OV + 1
2O(O + 1)V 2 = 56 928 960 ≈ 5.7 · 108.

In all the following plots we use colors to distinguish different values for TPv and different
symbols to distinguish the different values for Tij , as given in Table 8.1. We will first investigate
the compactness of the description upon variation of the two thresholds, by plotting the numer-
ical value of the difference in the occupied fragment energy ∆EoP = |EoP − E

o,f
P | as a function

of the number of parameters in the calculation. In Figure 8.4 we have given the numerical
value of deviation ∆EoP of the fragment energy calculated with all combinations of TPv and Tij
given in Table 8.1. It is remarkable that it is possible to close in on the correct CCSD fragment
energy Eo,fP to within an error of 10−6 a.u., only using (3.3%) 1.7% of the (non–redundant)
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Figure 8.4: The dependence of the fragment energy Eo
P on the two cutoff thresholds Tij , and TPv for

the FO and PNO spaces (and thus, on the number of parameters to be determined), where the color and
shape coding for the thresholds has been given in Table 8.1.
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amplitudes. It is further apparent that both decreasing TPv and Tij , increases the number of
amplitudes to be determined.

For a constant TPv (a given color in Figure 8.4), i.e. the same error of type 1 throughout the
calculation series, decreasing Tij has little effect on the precision of the overall calculation down
to about 10−4 a.u. In these series, decreasing Tij may be interpreted as gradually improving
the description of coupling effects, i.e. gradually decreasing the error of type 2. Thus, only if
the errors of type 1 are small enough, the coupling effects become important. Also, for smaller
TPv the effect of decreasing Tij is more pronounced.

Moreover, when the coupling error Tij is kept constant (a given symbol in Figure 8.4),
decreasing TPv improves the description of the fragment energy up to a certain region, where
the errors are mainly due to an insufficient description of the coupling space, and the curve
flattens out.

It is furthermore interesting to compare the computational timings of the algorithms, despite
the fact that we have already stated that the transformations will render the PNO calculation
rather expensive using the current pilot implementation. In Figure 8.5 we show how the time
for one (average) CCSD iteration is dependent on the two choices of thresholds TPv and Tij ,
where the color coding is again given in Table 8.1. The time for a standard CCSD iteration
is marked with a red x. Despite being inefficient, one could benefit from using the PNO code
in its current state for low precision DEC calculations, e.g. for FOTs of about 10−3 a.u. For
higher precisions, the cost of using this particular integral–direct PNO–CCSD implementation
becomes prohibitively high.
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Figure 8.5: The dependence of the time for one iteration (in seconds) on the two cutoff thresholds Tij ,
and TPv for the FO and PNO spaces (and thus, on the number of parameters to be determined), where
the color and shape coding for the thresholds has been given in Table 8.1. The red x marks the standard
CCSD reference calculation.
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8.4 Conclusion and outlook

In this chapter we have identified three types of error associated with a DEC fragment calcu-
lation, and based on the knowledge about their nature, we have investigated the possibility of
using an overall reduced virtual space for a given fragment. It was possible to find a space in
which the EOS amplitudes could be expressed very compactly (the truncated FO space), once
they had been determined. For MP2 the amplitude equation could also be solved in the trun-
cated FO space to obtain accurate EOS amplitudes. For CCD and CCSD this was not possible,
since the FO approach only avoids errors of type 1 and neglects the amplitudes the EOS ampli-
tudes couple with, which is of critical importance when solving CCD and CCSD equations. It
was found that the PNOs should be able to describe these coupling amplitudes approximately
with a tunable precision, and the explicit form of the T1 transformed PNO–CCSD equations
were given and the combined FO/PNO approach for a fragment calculation was introduced.

In other PNO based CC approaches, e.g. DLPNO-CCSD [95], one set of equations is solved
for the full molecule, and all the amplitudes determined, therefore enter the final correlation
energy directly. For this reason, it is sufficient to use one threshold when choosing the PNO
spaces in these approaches. In the presented fragment approach, we tried to divide the space
into a set of target (EOS) amplitudes and a set of auxiliary (coupling) amplitudes where the
former set was expressed in a set of FOs and the latter in PNOs. Therefore it was necessary to
use two thresholds in the combined FO/PNO approach.

Since the combined FO/PNO approach has two thresholds TPv and Tij the investigations
in the numerical section were focused on exploring the precision of the fragment energy with
respect to both thresholds and a crucial balance between TPv and Tij became apparent. The
balance between these two parameters was explained in terms of error 1 and error 2, but no
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practical solution for the determination of these thresholds has been given yet.
Also, it was investigated to which extent this pilot implementation was able to compete with

a standard CCSD implementation in terms of speed.
Despite the rather bad performance of the FO/PNO–CCSD code with respect to iteration

time, it was uplifting, to see the number of parameters that could be discarded using PNOs. It
is now a matter of the implementation details to reduce the time–to–solution for the FO/PNO–
CCSD algorithm. In a DEC context, it is not desirable to store individual fragment information
on disk, and therefore the integral–direct approach was chosen. This strategy, on the other
hand, turned out to be the main reason for the bad performance of the current PNO–CCSD
implementation. In order to achieve both reducing the number of transformations from the AO
to the PNO basis and avoiding using a local disk, we may need to store the necessary quantities
in a parallel distributed fashion (see Section 3) and/or try to reduce the memory requirements
by, e.g. using the resolution of the identity approximation, in a future implementation of the
FO/PNO–CCSD algorithm.
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Chapter 9

Summary and outlook

9.1 English summary

The work presented in this thesis has been focused on extending the application range of the
hierarchy of coupled cluster (CC) models. In order to do so, two strategies have been pursued i)
extending the application range of the classical CC singles and doubles (CCSD) model by using
the parallelism of modern supercomputers, and ii) using a reformulation of the conventional
theory to exploit locality and arrive at a linear–scaling algorithm.

i) For the extension of the application range of the conventional CCSD formalism to super-
computers it is of critical importance to reduce the memory requirements of the overall
algorithm. Since hard drive storage is not an option on these supercomputers, it is im-
perative to use a solver for non–linear sets of equations which has a minimal memory
footprint. Therefore, the conjugate residual with optimal trial vectors (CROP), which
only needs information from three iterations to retain the convergence rate, has been
implemented in a parallel–distributed way, where none of the vectors are stored in local
memory. However, the most expensive step in the solver algorithm is the evaluation of the
vector function, both memory– and time–wise. Thus, the evaluation of the CCSD vector
function has been implemented in a flexible, scalable and memory efficient way resulting in
a short time–to–solution for a broad variety of systems. For both of these algorithms the
development and implementation of a general parallel distributed tensor framework has
been necessary. Due to the use of very modern programming paradigms and the associ-
ated technical problems, the work on the parallel CCSD code has been delayed and it has
only recently been possible to run the calculations presented in this thesis. Therefore, the
bottlenecks for large node counts have only recently been identified and thus one future
goal is to continue optimizing the algorithm in order to further increase the application
range.

ii) The recently developed Divide–Expand–Consolidate (DEC) CC method is based on the
availability of local Hartree–Fock orbitals and a black–box optimization of the fragments
occurring in such a calculation. In order to retain a rigorous error control, especially when
the formalism is extended to gradients and properties, it is of critical importance that the
errors introduced at the fragment level are of the predefined size. The foundation for this
fragment optimization algorithm has been reviewed and improved, yet a few unresolved
problems with the virtual partitioning remain. These will be addressed in the near future.
In order to reduce the overall cost of a DEC calculation, an energy–based pair–fragment
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screening method has been developed. It has been demonstrated how the overall error
control in DEC may be achieved for the CCSD with perturbative triples (CCSD(T)).
Furthermore, the natural parallelism in a DEC calculation has been exploited in order
to run calculations on up to almost 10 000 computational nodes at a near perfect load
balance. However, a bottleneck in the currently used master–slave approach has been
identified and will be addressed in the near future.

A fragment CC calculation in the DEC formalism may grow very large, this is why the
algorithm of part i) has been developed. However, it would be more elegant if the cost
of a fragment calculation could be reduced by other means, e.g. by using the successful
pair–natural–orbital (PNO) approach in a fragment calculation. This strategy has been
explored and is going to be further pursued. After fixing the fragment optimization, it may
be interesting to investigate, how non–local properties, e.g. charge–transfer excitations
could be described using a fragment–based approach.

9.2 Dansk resumé

Mit bidrag til kvatekemien er dokumenteret i denne afhandling. Som PhD studerende har jeg
fokuseret p̊a udviklingen af metoder til at udvide coupled cluster (CC) teoriens brugbarhed
til store systemer, med fokus p̊a CC med singles og doubles eksitationer (CCSD). For at opn̊a
dette er to forskellige strategier blevet forfulgt, i) at udvide de klassiske modeller brugbarhed
med fokus p̊a store computeres parallelisme, og ii) at gøre brug af en alternativ formulering som
udnytter den fysiske lokalitet af elektronernes korrelation og derved gør det muligt at opn̊a en
linrt skalerende algoritme.

i) For at udvide anvendeligheden af CCSD p̊a store supercomputer, er det vigtigt at mindske
de hukommelsesmssige krav forbundet med s̊adan en beregning. Derfor er det essentielt
at have en ligningsløser med et minimalt hukommelsesmæssigt fodaftryk. Derfor er der
blevet implementeret en version af conjugate residual med optimale trial vektorer (CROP),
hvor alt data er gemt i parallelt distribueret hukommelse. Derudover er der blevet im-
plementeret en massiv parallel og fleksibel version af CCSD vektor ligningerne. For b̊ade
CROP ligningsløseren og CCSD ligningerne har det været nødvendigt at udvikle og imple-
mentere en tensor struktur, til h̊andtering af generelle tensorer fordelt over mange noder.
Da mange nye implementeringsstrategier er blevet anvendt, er der i forløbet opst̊aet flere
tekniske problemer og det har først været muligt at køre “at scale” kort tid forinden
afleveringen af denne afhandling. Dog har det allerede været muligt at identificere nogle
tekniske flaskehalse som helst skal løses indenfor en kort tidshorisont.

ii) Nøjagtigheden af Divide–Expand–Consolidate (DEC) metoden baseret p̊a lokale Hartree-
Fock orbitaler, der er unik for denne gruppe, er blevet undersøgt med hensyn til variation
af fragmenternes størrelse. Især med henblik p̊a molekylære egenskaber og gradienter,
er det afgørende at have rigorøs fejlkontrol, og i denne sammenhng er fundamentet for
fragmentoptimeringsalgoritmen blevet forbedret. Dog er der til stadighed problemer ved
benyttelse af virtuel partionering. Derudover er det blevet vist at det er muligt at udføre
linrt skalerende beregniger p̊a CCSD med perturbative triples (CCSD(T)) niveau og at
koden skalerer til ti–tusindvis af noder. En DEC–fragment beregning kan blive stor og
dyr, hvilket har været drivkraften bag udviklingen i punkt i). En mere elegant løsning
ville imidlertid være at reducere omkostingerne af en fragment beregning ved brug af
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f.eks. pair–natrual–orbitals (PNO). Denne strategi er blevet undersøgt og er under stadig
udvikling, og det ville her være interessant at undersøge hvordan man kan beskrive ikke
lokale egenskaber, som f.eks. charge–transfer–excitations, med lokale metodikker.
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Computing systems

• Titan: On Titan, each compute node contains an AMD OpteronTM 6274 (Interlagos)
CPU which splits the node into two NUMA (Non-Uniform Memory Access) nodes (dies),
each with 4 “bulldozer” floating-point units accompanied by two 2.2 GHz integer cores
(i.e. 16/8 integer cores/floating-point units per NUMA node), and 16 GB of RAM (32GB
per node). All compute nodes contain one NVIDIA KeplerTM GPU with 6GB of DDR5
memory. The network is a Cray GeminiTMarchitecture which is set up as a 3D torus.

• Chester: Each Chester node is configured like, a Titan node. There are only 80 nodes
on Chester

• Grendel: Grendel is a local commodity cluster at Aarhus University with currently 13
queues of nodes of very different specification (http://www.cscaa.dk/grendel/overview/).
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