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Preface

This thesis is submitted to the Faculty of Science at the University of Aarhus to fulfill the
requirements for obtaining the PhD degree in chemistry. It contains the results of three
years of PhD studies at the Center for Theoretical Chemistry, Department of Chemistry,
University of Aarhus, under the supervision of Prof. Poul Jørgensen.

The objective of this thesis is to obtain an efficient solver for so-called response equa-
tions that need to be solved to determine molecular properties for the Hartree–Fock and
Kohn–Sham Density Functional Theory. The main focus have been put on application of
damped response theory in a linear-scaling framework and on determining molecular prop-
erties (spectra) for large molecular systems.
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1. INTRODUCTION 1

1 Introduction

The beginning of the 20th century brought significant discoveries in the world of science.
These had huge influence on the way nature and matter are perceived nowadays. The foun-
dations of quantum mechanics were established, enabling theoretical investigation of chemical
reactions and molecular properties. Since the 1920s, a theoretical treatment of molecular
systems using quantum chemistry attracted the attention of many scientific research groups.

An accurate description of the electronic structure and properties of molecular systems
may be obtained from the solution to the Schrödinger equation [3]. However, this equation
may only be solved analytically for a few model systems. Due to the fact that the analytic
solution to the Schrödinger equation is not available for a general system, a number of
hierarchical approaches have been formulated for approximate solutions. The traditional way
of carrying out electronic structure calculations is using the wavefunction-based methods.
The simplest of the methods is the Hartree–Fock (HF) method, where the motion of electrons
is described using a mean-field approach [4–6]. In this method, the interaction between
the electrons is considered in a field of all electrons, and simultaneous interactions (so-
called electron correlation) are neglected. More accurate methods that include the electron-
electron interaction are known as the post-HF methods. The simplest is the second-order
Møller–Plesset perturbation theory (MP2) [7]. Most successful, nowadays, is the Coupled
Cluster (CC) hierarchy [8, 9], which has the advantage that the approximate models keep
most important features of the basic theory [10]. An alternative to the wavefunction-based
methods is Density Functional Theory (DFT) [11], which is based on the fact that the
ground state electronic energy can, in principle, be determined from the electron density.
Kohn–Sham DFT (KS-DFT) [12, 13] represents a reasonable compromise between cost and
accuracy. However, in its present formulation, it does not provide a systematic error control.

Molecular properties are fundamental quantities underlying the macroscopic behavior
of matter, which may be compared to experimental results. Since the seminal work of
Pulay [14], great progress has been made in terms of numerical and analytical derivation
of molecular properties. Static (time-independent) properties may be obtained from energy
derivatives with respect to perturbing field. However, when a molecule interacts with time-
dependent electromagnetic field, the energy of the system is not well-defined and therefore its
derivatives cannot be used for calculating properties. In this case, properties may be obtained
using response theory [15, 16] that determines the response of a molecular system towards
weak perturbing fields, such as internal magnetic moments or externally applied electric and
magnetic fields. Using quantum-chemical methods, it is nowadays possible to investigate a
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large number of molecular properties of increasing complexity, from computationally simple
energy differences, such as reaction enthalpies, to more involved higher-order frequency-
dependent polarizabilities and multi-photon absorption strengths [17].

The bottleneck for applying quantum-mechanical methods to large systems is the scaling
of a computational cost (time) with increasing system size. Formally, HF and KS Self-
Consistent Field (SCF) methods scale asO(N4), whereN refers to the system size. Moreover,
wavefunction-based correlated methods have a higher scaling, e.g. MP2 scales as O(N5),
CC with Singles and Doubles excitations (CCSD) [18] and CC with Singles and Doubles
excitations and perturbative Triples (CCDS(T)) [19] scale as O(N6) and O(N7), respectively
(see Fig. 1.1). With such a scaling, advances in computer hardware alone will never allow
calculations on large molecular systems. A significant effort has therefore been directed
towards the development of new algorithms with a reduced scaling. The goal is to develop
linear-scaling methods, i.e. methods where the computational cost scales linearly with the
system size, O(N) [20, 21].

During the last two decades, a lot of attention has been focused on developing a linear-
scaling framework for carrying out HF and KS-DFT calculations. Two major obstacles
have been faced for the optimization of the energy in linear-scaling fashion, namely the
construction of the Fock/KS matrix and the generation of a new density matrix. These
problem may be circumvented by using a density based formulation of SCF [22]. The linear-
scaling development has also been extended to include molecular properties that can be
calculated from linear [23], quadratic [24] and higher response functions.

The determination of molecular response properties requires that so-called response equa-
tions are solved. In the early days of quantum chemistry, when only small molecular systems

tim
e

size of the system

linear
HF

MP2
CCSD

CCSD(T)

Figure 1.1: Scaling of the SCF
method, and hierarchy of correlated
methods including MP2, CCSD and
CCSD(T).
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?
Figure 1.2: The first fifty excita-
tion energies (marked in green) for the
DNA fragment consisting of one (left)
and two (right) nucleotides. The red
rectangle represents the region of the
spectrum which is beyond the reach of
standard response theory.

were considered, the response equations were set up explicitly and the solutions were obtained
by applying standard algorithms of numerical analysis, for example using diagonalization and
triangularization methods, e.g. Gauss–Jordan elimination or LU-factorization [25–27]. For
larger molecular systems, it is impossible to solve response equations explicitly, and using
iterative subspace algorithms have therefore become a standard practice.

Molecular properties for ground and excited states, and for transitions between these
states, can be determined from molecular response functions and their poles and residues.
In standard response theory, absorption spectra are obtained from residues of response func-
tions and are therefore acquired by solving a generalized eigenvalue problem [16]. This
iterative procedure starts from the energies of the lowest excited states, and therefore only
the lowest excitations are addressed using this approach. For small molecules, in most cases,
the lowest excitations are sufficient to obtain the desired absorption spectrum. However, for
large systems, where a vast amount of excited states is present, it may be not possible to
access all excitation energies of interest using this approach (see Fig. 1.2). The straightfor-
ward comparison between standard theory and experiment is therefore impossible in many
interesting regions of the spectrum for large molecular systems. This problem can be solved
by introducing damped response theory [28,29].

Damped response theory is based on a phenomenological description, where the excited
states are multiplied by a damping factor [exp(−2γt)], where γ is denoted the inverse ef-
fective lifetime or the excited-state lifetime broadening parameter [28–35]. Introducing γ
in this manner is equivalent to introducing complex excitation energies, which removes sin-
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gularities of the response functions at resonance frequencies. Such a modification leads to
real and imaginary components of response functions that may be connected with dispersion
and absorption phenomena, respectively. Since the peak spectrum broadening of electronic
spectra is by far dominated by collisions, Doppler and vibrational broadening, rather than
the natural lifetimes of the excited states [36], an identical damping parameter can be used
for all excited states [28,29]. In standard response theory the transitions between the ground
and excited states can be presented as a delta-peaked residue spectrum, whereas in an ex-
perimental spectrum and in the absorption spectra obtained using damped response theory,
the peaks are broadened. The employment of damped response theory gives an opportunity
to obtain absorption spectra in any frequency of interest, which may not be possible when
the standard response theory is used.

As mentioned before, the determination of molecular response properties requires analysis
of frequency-dependent response functions, which translates into solving sets of response
equations. The overall structures of the response equations are identical for variational
wavefunctions such as the HF and Multi-Configurational SCF (MCSCF) as well as for KS-
DFT and therefore the key module in programs devoted to this task is the response equation
solver. The large dimensionality imposes the use of iterative algorithms, and criteria against
which such solver routines are evaluated are stability and efficiency. Minimal memory usage
and disk storage is also required for treating large molecular systems1 and it should be
possible to perform calculations in the entire frequency range. The traditional way of solving
large sparse sets of linear equations is based on the iterative subspace approaches, e.g. for
solving the SCF equations as proposed in Ref. [37]. When equations are solved using the
subspace algorithms, vectors from all iterations must be stored on disk, which may become
impractical for large molecular systems. It was recognized [38] that the algorithm presented
in Ref. [37] leads to an iteration sequence identical to the one obtained using the conjugate
gradient (CG) algorithm [39]. The advantage of using a CG formulation (and similarly for the
conjugate residual (CR) algorithm [40]) is that only the last three trial vectors are necessary
to maintain the information content of all previous trial vectors. The vectors manipulation
therefore becomes simplified and the disk storage significantly reduced. In Ref. [41], Olsen et
al. introduced paired trial vectors in the iterative subspace algorithm which highly improved
the performance of the Davidson algorithm [42] used for solving the eigenvalue response
equation. Better convergence of the standard response equation was also observed.

The present work focuses on two related topics. The first topic is how to improve the

1Naturally, it is also an advantage for calculations on small molecules.
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linear response equation solvers within the linear-scaling framework. An attempt of using
the CG and CR algorithms for solving standard response equations has also been made.
The second topic is how to introduce the damped response theory for HF and KS-DFT in
the linear scaling framework and make damped response equation solver easily applicable to
higher-order equations. Using damped response theory, the first- and higher-order response
equations may be solved in the entire frequency region, which makes it a useful tool for
calculating absorption spectra for large molecular systems.

The thesis is organized as follows:

Electronic Structure Theory Short introduction to electronic structure theory, defining
terms important in the following chapters for the HF method, KS-DFT and the linear-
scaling formulation of both methods.

Standard Response Theory Introduction to response theory for the exact and approxi-
mate (HF) state, based on the quasi-energy formulation [43, 44]. The structure of the
response matrices is presented in details and the linear-scaling formulation for solving
the response equations is discussed.

Damped Response Theory Damped response theory is introduced for the first- and higher-
order response equations. The quasi-energy formulation [43, 44] is used in connection
with the response parameter elimination rules of Ref. [45] to obtain simple expressions
for standard response functions in terms of response parameters. The quasi-energy
formulation is also compared to the damped response theory introduced by Norman et
al. [28], which is based on the Ehrenfest theorem.

Higher-order properties in damped response theory The damped response theory for-
mulation is applied to higher-order properties, such as the magnetic circular dichroism
and the two-photon absorption.

Standard iterative algorithms Standard iterative algorithms that may be applied to re-
sponse equations, such as an iterative subspace algorithm and the CG and CR algo-
rithms are described.

Solving response equations using standard iterative methods General forms of re-
sponse equations are briefly discussed and the application of standard iterative methods
on the response equations is presented. Also problems that may occur if the algorithms
are straightforwardly applied to response equations are discussed.



6

Iterative algorithms with paired trial vectors The iterative subspace algorithms with
paired trial vectors [41] for solving standard and eigenvalue response equations are
discussed. The damped response equation solver within the linear-scaling framework
is introduced and compared to the previously used approach by Norman et al. [29].

Iterative algorithms with symmetrized trial vectors Algorithms with symmetrized
trial vectors for solving the standard, damped and eigenvalue response equations are
introduced.

Illustrative results Numerical examples illustrating the efficiency of the various algorithms
are presented and evaluated against such criteria as efficiency, stability and disk storage.
Absorption and dispersion spectra determined using the damped response theory are
also displayed.

Conclusions Brief conclusions on the performance and efficiency of various algorithms for
solving standard, damped and eigenvalue response equations are presented.
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2 Electronic Structure Theory

Electronic structure theory describes a system based on the motion of electrons in atoms and
molecules. This is done in context of the Born-Oppenheimer approximation [46], which as-
sumes that electronic and nuclear motion in molecules are independent and can be considered
separately.

In the electronic structure theory, the electronic Schrödinger equation [3] is solved

ĤΨ = E0Ψ , (2.1)

where
Ĥ – the time-independent Hamiltonian, often denoted Ĥ0,
E0 – the ground state energy,
Ψ – the electronic wavefunction that contains all information about the system.

The complexity of the wavefunction Ψ increases with the size of the system, as it depends on
3Ne spatial coordinates, where Ne is the number of electrons in the system. The Hamiltonian
Ĥ is given by

Ĥ = T̂e + V̂ne + V̂ee + hnuc , (2.2)

where
T̂e – the kinetic energy operator,
V̂ne – the external potential arising from the electron-nuclei attraction,
V̂ee – the interaction between the electrons,
hnuc – the constant nuclear-nuclear repulsion,

and may be partitioned in one- and two-electron terms

Ĥ =
Ne∑
i

ĥi +
Ne∑
i 6=j

ĝij + hnuc . (2.3)

ĥi and ĝij are given as

ĥi = −1

2
∇2
i −

Nn∑
J

ZJ
|RJ − ri|

; ĝij =
1

rij
=

1

|rj − ri|
, (2.4)

where
Nn – the number of nuclei,
ZJ – the charge of the nucleus J ,
|RJ − ri| – the distance between nucleus J and electron i,
|rj − ri| – the distance between electrons i and j.



8

hnuc contains the contribution from internuclear repulsion and is defined as

hnuc =
1

2

∑
K 6=L

ZKZL
|RK −RL|

. (2.5)

hnuc may contain some additional interactions for a specific calculation, for example a cal-
culation of magnetic properties (e.g. NMR parameters), where it contains additional purely
magnetic interactions, such as the Zeeman interaction between the nuclear magnetic dipole
moments and the external magnetic field [47].

In order to solve the Schrödinger equation in Eq. (2.1), the many-electron wavefunction
is expanded in terms of N -electron Slater determinants that are built from one-electron
functions (spin orbitals) and satisfy the Pauli principle. The Schrödinger equation is solved in
the limit of an infinite number of one-electron functions and all possible Slater determinants.
However, it is impossible to perform in practice, and therefore some approximations have
been introduced. A finite number of one-electron functions (the basis set) has to be chosen.
Various methods have been proposed to systematically truncate the N -electron and the one-
electron basis. The Schrödinger equation may be solved within a given one-electron basis
using all possible Slater determinants, which is called the Full Configuration Interaction
Method (FCI) method. However, computational requirements limits its use to very small
systems containing only few electrons.

2.1 The Hartree–Fock method

The simplest method in the N -electron basis hierarchy includes only one Slater determinant
to describe the N -electron wavefunction and is known as the Hartree–Fock (HF) model [4,5].
The wavefunction has the form

ΨHF (x1,x2, . . . ,xN) = |ψ1(x1)ψ2(x2) · · ·ψN(xN)| , (2.6)

where ψ are spin orbitals, containing spatial (φi) and spin (σ) components

ψi(xi) = φi(r)σ(s) . (2.7)

The energy is minimized with respect to variations in the molecular orbital (MOs) φi subject
to the constraint that the one-electron functions remain orthonormal. This is equivalent to
solving a set of one-electron equations (the canonical HF equations)

F̂iφi = εiφi , (2.8)
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where εi is the orbital energy and F̂i is the Fock operator given by

F̂i = ĥi +
∑
j

(2Ĵj − K̂j) . (2.9)

Ĵ and K̂ are the Coulomb and exchange operators, respectively, and are defined as

Ĵiφj(r1) = φj

∫
φ?i (r2)

1

|r1 − r2|
φi(r2)dr2 , (2.10)

K̂iφj(r1) = φi

∫
φ?i (r2)

1

|r1 − r2|
φj(r2)dr2 . (2.11)

The Coulomb contribution describes the interaction between two charge distributions de-
scribed by |φi(r1)|2 and |φj(r2)|2. It also contains an unphysical term describing a repulsion
between identical electrons (self-interaction). The exchange contribution is a consequence of
the antisymmetrization of the wavefunction. It contains a term that exactly cancels out the
self-interaction component of the Coulomb contribution.

Since the Fock operator depends on the orbitals, the HF equations in Eq. (2.8) must
be solved iteratively in a self-consistent manner. In the HF approximation, each electron is
moving in an average field generated by other electrons, i.e. a mean-field approximation.
When a set of orbitals is determined, the Hartree-Fock energy can be evaluated as

EHF = 2
∑
i

hii +
∑
ij

(2Jij −Kij) + hnuc , (2.12)

where hii, Jij and Kij are expectation values of their respective operators. The consequence
of replacing the two-electron interaction with the one-electron Fock operator is the negligence
of the electron correlation. The correlation energy is defined as the difference between the
Hartree–Fock energy and the exact energy.

The molecular orbitals φi can be expanded in a set of atomic orbitals (AOs) χµ

φi =
∑
µ

χµCµi . (2.13)

For a closed-shell system, inserting this expansion into Eq. (2.8) yields to the Roothaan-Hall
equations [48, 49] that can be written as

FC = SCε , (2.14)

where C contains the MO expansion coefficients of Eq. (2.13), ε is a diagonal matrix con-
taining the orbital energies and S is the AO overlap matrix given as

Sµν =

∫
χ?µ(r)χν(r)dr . (2.15)
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F is the AO Fock matrix expressed in terms of the one-electron density matrix

F(D) = h + G(D) , (2.16)

where the AO density matrix D is given as

D = CoccC
†
occ . (2.17)

Cocc denotes the subblock of occupied MO coefficients. h in Eq. (2.16) is the one-electron
Hamiltonian and the elements of G(D) are given by

Gµν(D) = 2
∑
ρσ

gµνρσDρσ −
∑
ρσ

gµσρνDρσ . (2.18)

In the AO basis, the one- and two-electron integrals are given as

hµν =

∫
χ?µ(r1)

(
−1

2
∇2

1 −
Nn∑
J

ZJ
|RJ − r1|

)
χν(r1)dr1 , (2.19)

gµνρσ =

∫ ∫
χ?µ(r1)χ?ρ(r2)

1

|r1 − r2|
χν(r1)χσ(r2)dr1dr2 . (2.20)

Eq. (2.14) represents the HF equations in Eq. (2.8) in the atomic orbital basis.
The Roothaan-Hall equations often converge slowly. Therefore, they are usually com-

bined with a convergence acceleration scheme such as the Direct Inversion in the Iterative
Subspace algorithm (DIIS [50, 51]) and the Density Subspace Minimization (DSM [52, 53]).
An alternative is the Augmented Roothaan-Hall method (ARH [54]).

The HF method gives a decent description of the system and is used as a starting point
for more accurate approximations, which include the effects of electron correlation that are
necessary for correct description of e.g. dissociation processes or near-degenerate systems.
Unfortunately, applying wavefunction-based correlated methods is very expensive (due to
their high scaling), and they cannot be used in calculations on large molecular systems.

2.2 Density Functional Theory

As mentioned in the previous section, the cost of a calculation increases with the number
of electrons in the system since the wavefunction depends on 3Ne spatial coordinates. A
different approach was proposed by Hohenberg and Kohn [12], where a molecular system is
described by a functional that depends on the electron density ρ(r) given as

ρ(r) = N

∫
|Ψ(x1,x2, · · · ,xn)|2ds1dx2 · · · dxN , (2.21)
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instead of the wavefunction. The electron density function depends on three coordinates,
independently of the size of the system. This approach is known as the Density Functional
Theory (DFT).

The Hohenberg–Kohn theorem [12] postulates that the exact ground state electron den-
sity may be uniquely associated with an external potential vext(r) (up to an additive con-
stant). From the Hohenberg–Kohn theorem it follows that the potential vext(r) is a functional
of the electron density vext[ρ], and that the ground state energy E0 is a functional of the elec-
tron density, in the sense that the density uniquely determines the external potential, which
in turn determines the energy E0[vext]. Hohenberg and Kohn further recast the variational
principle in terms of the electron density

E0[vext] = min
ρ

(F [ρ] +

∫
ρ(r)vext[ρ]dr) , (2.22)

where the minimum is constrained to densities that are v-representable [55], and F [ρ] is the
universal Hohenberg–Kohn functional that is independent of the external potential and given
as

F [ρ] = E0[vext]−
∫
ρ(r)vext[ρ]dr . (2.23)

The ground state electron density therefore contains all the information needed to recon-
struct the external potential and to obtain the wavefunction and the ground state energy.
Unfortunately, the F [ρ] functional is unknown.

A set of equations for finding the density in a self-consistent fashion is known as Kohn–
Sham (KS) equations [13](

ĥi +
∑
j

2Ĵj +
∂Exc
∂ρ(r)

)
φi =

∑
j

εijφj , (2.24)

where Exc is the exchange-correlation energy and the density is given by

ρ(r) =
∑
i

|φi(r)|2 . (2.25)

Eq. (2.24) is similar to the HF equations in Eq. (2.8) and a matrix equation formulation of
the KS equations may be obtained

FKSC = SCε , (2.26)

where FKS is the Kohn-Sham matrix given as

FKS = h + 2J(D) + Fxc(D) . (2.27)
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Fxc is the exchange-correlation matrix in the AO basis

F xc
µν(D) =

∫
χµ(r1)χν(r2)vxc(r)dr =

∫
χµ(r1)χν(r2)

∂Exc[ρ]

∂ρ(r)
dr . (2.28)

In Eq. (2.28), the exchange-correlation potential vxc(r) has been implicitly defined using

ρ(r) =
∑
µν

χµ(r)χν(r)Dµν . (2.29)

The algorithms for solving the HF and KS-DFT equations are identical. The only dif-
ference is in construction of the Fock/KS matrix that in HF has a form of Eq. (2.9) and in
KS-DFT of Eq. (2.27).

One of the main tasks of DFT is to construct an approximate exchange-correlation energy.
This component arises from the existence of the Coulomb hole (due to the electron-electron
repulsion) and the Fermi hole, known also as an exchange hole (due to the Pauli principle
resulting in repulsion of electrons of the same spin). There are two types of approximations
to the exchange-correlation energy:

• Local Density Approximation (LDA) or Local Spin Density Approximation (LSDA)
where the local homogeneity of the density is assumed. The exchange-correlation en-
ergy component arising from the local density is a product of volume and density
exchange-correlation energy. The LDA approximation is often used for obtaining ge-
ometries, vibration frequencies and ionization potentials due to its low cost. The chem-
ical bond energy and intermolecular dispersion interactions calculations are burdened
with a large error.

• Non-Local Density Approximation (NLDA) where the density cannot be treated as lo-
cal and depends on the whole system. The exchange-correlation energy can be approx-
imate e.g. from the Gradient Expansion Approximation (GEA) and the Generalized
Gradient Approximation (GGA) [56–58], where it is a function of the density ρ and its
gradient ∇ρ.

KS-DFT very often gives results that are in excellent agreement with the experiment
data, however, it does not provide systematic control of error (in other words, a systematic
approach towards the exact solution to the Schrödinger equation). DFT is often use in
simulations of large molecules.
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2.3 Linear-scaling Hartree–Fock and Density Functional Theory

In Ref. [22], Sałek et al. presented a linear-scaling implementation of molecular electronic
self-consistent field theory, where the HF and KS-DFT equations are solved iteratively, using
the AO basis subspace method. Each iteration consists of the construction of the Fock matrix
(time dominating step) and a construction of the new density matrix. In order to obtain
linear-scaling, the evaluation procedures in both steps must scale linearly. For the evaluation
of Fock/KS matrix to scale linearly, the construction of both the Coulomb and the exchange
contributions must scale linearly.

Construction of the two-electron AO integrals scales as O(N4) with a size of the system.
However, the integrals in Eq. (2.20) vanish if orbitals χµ and χν and orbitals χρ and χσ do
not overlap significantly. Prescreening of integrals can thus reduce the scaling to O(N2).
The scaling of the Coulomb contribution can be further reduced by using the Fast Multi-
pole Method (FMM) [59], that was originally developed for point charges [60]. The total
interaction is split into a near-field short-range interaction (NF), that is calculated exactly
and a far-field long-range interaction (FF). The FMM algorithm has been modified to treat
continuous charge distributions in the Continuous Fast Multipole Method (CFMM) [61], the
Generalized very Fast Multipole Method (GvFMM) [62] and others [63, 64]. Calculation
of the Coulomb contribution can be speeded up by using density-fitting techniques [65, 66],
where the density is expanded in a set of auxiliary basis functions, thereby reducing the
four-center integrals to three- and two-center types. The standard density-fitting method,
however, does not scale linearly. To achieve linearly scaled density fitting, two different ap-
proaches have been implemented based on the use of a local metric [67–69] and on a spatial
partitioning of the electron density [67,70,71].

The exchange contribution describes a local quantity, and therefore it should scale lin-
early. However, as shown in Ref. [72], a straightforward implementation leads to a scaling
slightly lower than O(N2) due to a slow decay of the off-diagonal elements of the density
matrix arising from the basis set superposition errors. To reduce the scaling, a new screening
technique was therefore introduced in the order-N exchange (ONX) method [72]. A similar
accuracy was accomplished in the near-field exchange (NFX) method [73] based on the FMM
technique. The ONX method was then improved by exploiting the locality of the density
matrix [74]. The LinK method [75], which is similar to the ONX method was also introduced.
LinK, however, also exploits the permutational symmetry of the integrals, which radically
speeds up the calculation.

The most popular DFT functionals are of local nature, and it should therefore be possible
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to obtain linear scaling. However, the exchange-correlation matrix is evaluated by numer-
ical integration and the complexity depends both on the number of grid points and basis
functions. By using the partition functions to decompose the integrals, Pérez–Jordá and
Yang [76] presented a linearly scaled scheme that is independent of the number on basis
functions. Later, an efficient atomic weight scheme [77] for fast linearly scaled evaluation of
the exchange-correlation contribution was developed. There were other attempts to obtain
an efficient evaluation of the exchange-correlation contribution that are not presented in this
thesis, e.g. in Refs. [78,79].
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3 Standard Response Theory

To relate results obtained by theoretical methods to experimental values, it has to be possible
to measure calculated quantities experimentally. For that reason, theoretical treatment
of molecular properties attracted the attention of many groups. Using quantum chemical
methods, it is nowadays possible to investigate a large number of molecular properties of
increasing complexity [17].

Static (time-independent) molecular properties, e.g. dipole moments and time-independent
polarizabilities, may be obtained from the derivatives of the energy with respect to perturb-
ing field. However, a great interest in dynamical (time-dependent) properties led to the
development of response theory.

When a molecule is in the presence of a time-dependent external field oscillating with a
specified frequency, its observables start to oscillate and therefore become time-dependent.
The interaction between the molecular system and the external field may be described using
response theory. The response of the observable may be expanded in powers of the field
strength: the linear response of the system is determined by the linear response function, the
quadratic response of the system by the quadratic response function, etc. [80]. The response
functions are used to calculate molecular response properties, e.g. a frequency-dependent
linear polarizability, may be evaluated from the linear response function. From the poles
and residues of the response functions, excitation energies, oscillator strength parameters for
multi-photon transitions and excited state properties may be obtained [16].

In this chapter, the interaction between a molecular system and a general time-dependent
field will be examined in order to determine the linear and quadratic response functions.
Standard response theory for an exact state will be described in Section 3.1, and approximate
response theory will be discussed in Section 3.2.

3.1 Exact response theory

In this section response theory for the exact state will be discussed in the quasi-energy
formulation. In Section 3.1.1, a framework is introduced. Response functions in the quasi-
energy formulation are described in Section 3.1.2 and their physical interpretations are given
in Section 3.1.3. In Section 3.1.4, exact response equations are derived and the first- and
higher-order equations are described in Sections 3.1.5 and 3.1.6, respectively.
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3.1.1 A time evolution of an exact state

The time development of the exact wavefunction of a system in the presence of a general
external field is governed by the time-dependent Schrödinger equation, which in atomic units
has the form

Ĥ|0̄(t)〉 = i
∂

∂t
|0̄(t)〉 . (3.1)

Ĥ is the total Hamiltonian operator given as

Ĥ = Ĥ0 + V̂ t, (3.2)

where Ĥ0 is the time-independent Hamiltonian of the unperturbed system fulfilling the time-
independent Schrödinger equation in Eq. (2.1), and V̂ t is the time-dependent perturbation.

The perturbation operator V̂ t is Hermitian and periodic, and may be written in the
frequency (instead of time) domain

V̂ t =
N∑

j=−N

exp(−iωjt)V̂ ωj ; V̂ ωj =
∑
B

εB(ωj)B , (3.3)

where εB(ωj) is the perturbation strength parameter for the B operator at frequency ωj that
controls the field amplitude. To ensure the Hermiticity of V̂ t, the following relations need to
be fulfilled

ω−j = −ωj , (3.4)

εB(ωj) = εB(ω−j)
∗ , (3.5)

B = B† . (3.6)

By combining the frequency (j) and the operator (B) indices into a common index (b),
Eq. (3.3) may be written in a compact form

V̂ t =
∑
b

exp(−iωbt)εbB , (3.7)

where εb = εB(ωj) = εB(−ωj)∗ = ε∗−b.
The wave function |0̄〉 in Eq. (3.1) may be written in a phase-isolated form

|0̄〉 = exp[−iF (t)]|0̃〉 (3.8)

where |0̃〉 is a time-dependent function that may be expanded in orders of the perturbation
strengths

|0̃〉 = |0〉+ |0̃(1)(t)〉+ |0̃(2)(t)〉+ . . . , (3.9)
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and is chosen to be normalized (〈0̃|0̃〉 = 1).
When a time-dependent perturbation is applied, the energy is not an eigenvalue of the

total Hamiltonian in Eq. (3.1). Instead, the quasi-energy Q(t) may be introduced as the
time derivative of the phase function in Eq. (3.8), Ḟ (t). Inserting Eq. (3.8) into the time-
dependent Schrödinger equation in Eq. (3.1), and using the fact that Ĥ commutes with the
phase factor exp[−iF (t)], the quasi-energy may be determined as

Q(t) = Ḟ (t) = 〈0̃|Ĥ − i ∂
∂t
|0̃〉 . (3.10)

Using Eq. (2.1) and the normalization condition, it can be seen that Q(t) → E0 for the
unperturbed system.

3.1.2 Response functions in the quasi-energy formulation

Response theory is based on the fact that the observable of a molecule in the presence of an
external field may be expanded in powers of the field strength. In general, the expectation
value of an operator A for a time-dependent function |0̄(t)〉 can be expanded in the series [80]

AAv(t) = 〈0(t)|A|0(t)〉 = 〈0̃(t)|A|0̃(t)〉 =

= 〈0|A|0〉+
∑
b

exp(−iωbt)〈〈A;B〉〉ωbεb

+ 1
2

∑
b,c

exp[−i(ωb + ωc)t]〈〈A;B,C〉〉ωb,ωcεbεc

+ 1
6

∑
b,c,d

exp[−i(ωb + ωc + ωd)t]〈〈A;B,C,D〉〉ωb,ωc,ωdεbεcεd

+ · · · . (3.11)

The function 〈〈A;B〉〉ωb is denoted the linear response function. The functions 〈〈A;B,C〉〉ωb,ωc
and 〈〈A;B,C,D〉〉ωb,ωc,ωd are known as the quadratic and cubic response functions, respec-
tively. To obtain a unique definition of the response functions, they are defined to be symmet-
ric with respect to interchange of the integration variables, i.e. symmetric under simultane-
ous permutation of frequency indices and operators (e.g. 〈〈A;B,C〉〉ωb,ωc = 〈〈A;C,B〉〉ωc,ωb).

Response functions may be identified by applying the quasi-energy formalism [43, 44].
Following Ref. [43], a time-averaged quasi-energy

{Q(t)}T =
1

T

∫ T/2

−T/2
Q(t)dt , (3.12)

fulfills the variational principle

δ{Q(t)}T = 0 , (3.13)
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where T is a common period for all frequencies in V t in Eq. (3.7). Furthermore, the time-
averaged quasi-energy satisfies a generalized Hellmann–Feynman theorem [81,82]

d{Q(t)}T
dεa

=
{
〈0̃|A|0̃〉 exp(−iωat)

}
T
. (3.14)

By combining Eqs. (3.11) and (3.14) the linear, quadratic, and cubic response functions may
be identified as

〈〈A;B〉〉ωb =
d2{Q(t)}T
dεadεb

∣∣∣∣
ε=0

; ωa = −ωb , (3.15a)

〈〈A;B,C〉〉ωb,ωc =
d3{Q(t)}T
dεadεbdεc

∣∣∣∣
ε=0

; ωa = −ωb − ωc , (3.15b)

〈〈A;B,C,D〉〉ωb,ωc,ωd =
d4{Q(t)}T
dεadεbdεcdεd

∣∣∣∣
ε=0

; ωa = −ωb − ωc − ωd , (3.15c)

and similarly for higher-order response functions. ε denotes the entire set of perturbation
strengths.

Eqs. (3.15a)–(3.15c) have similar forms in time-independent theory. Dynamic molecular
properties may be obtained from quasi-energy derivatives, whereas static properties are
constructed as energy derivatives [since the energy is well-defined in the time-independent
Schrödinger equation in Eq. (2.1)].

3.1.3 Physical interpretation of response functions

The linear response function has the form [16]

〈〈A;B〉〉ω =
∑
n

(
A0nBn0(ω)

ω − ωn
− B0n(ω)An0

ω + ωn

)
, (3.16)

where Anm = 〈n|A|m〉 is a transition matrix element of the operator A between states
|n〉 and |m〉. When an external homogeneous electric field oscillating with frequency ωb is
applied on a molecule with a dipole moment µ, the response of the system may be obtained
from the expansion in Eq. (3.11), where the operator A refers to the electric dipole operator.
The (µα, µβ)th component of the linear response function gives the αβ component of the
frequency-dependent linear polarizability tensor

ααβ = −〈〈µα;µβ〉〉ωb = −
∑
m

(
µ0m
α µm0

β

ωb − ωm
−
µ0m
β µm0

α

ωb + ωm

)
. (3.17)

The frequency-dependent dipole polarizability describes the absorption of one photon of
energy ωb and the emission of one photon of energy ωb. The residues corresponding to the
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poles at ωb = ±ωf of Eq. (3.17),

lim
ωb→ωf

(ωb − ωf )〈〈µα;µβ〉〉ωb = µ0f
α µ

f0
β , (3.18a)

lim
ωb→−ωf

(ωb + ωf )〈〈µα;µβ〉〉ωb = −µf0
α µ

0f
β , (3.18b)

yield information about the dipole transition matrix element between the reference state |0〉
and the excited state |f〉.

The quadratic response function may be written as

〈〈A;B,C〉〉ωb,ωc =

=
1

2

(
A0nBnmCm0

(ωb + ωc − ωn)(ωc − ωm)
+

A0nCnmBm0

(ωb + ωc − ωn)(ωb − ωm)
+

+
C0nBnmAm0

(ωb + ωc + ωn)(ωc + ωm)
+

B0nCnmAm0

(ωb + ωc + ωn)(ωb + ωm)
+

+
B0nAnmCm0

(ωb + ωn)(ωc − ωm)
+

C0nAnmBm0

(ωc + ωn)(ωb − ωm)

)
. (3.19)

When a homogeneous electric external fields of frequencies ωb and ωc are applied on a
molecule with a dipole moment µ, the quadratic response of the system may be obtained
from Eq. (3.19), where the operators A, B and C refer to components of the electric dipole
operator. The (µα, µβ, µγ)-th component of the quadratic response function is identical to
the (minus) (αβγ)th component of the electric frequency-dependent dipole hyperpolarizabil-
ity tensor [83] at frequencies ωb, ωc. The frequency-dependent hyperpolarizability describes
the absorption of two photons, one of frequency ωb and one of frequency ωc, and the emission
of one photon of frequency ω = ωb + ωc.

Various first-, second- and third-order properties and their physical relevance are listed
in Table 3.1.

3.1.4 Response equations

The response equations have the same form to all orders in the perturbation. They can be
determined by differentiation of Eq. (3.13) with respect to the perturbation strengths. An
exponential parameterization of the perturbed wavefunction can be introduced as [16]

|0̃〉 = exp[X(t)]|0〉 , (3.20)

where X(t) is an anti-Hermitian operator given as

X(t) = xp(t)Rp , (3.21)
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Table 3.1: Definition and physical relevance of the various (frequency-dependent) polariz-
abilities and hyperpolarizabilities. The table has been taken from Ref. [17].

(hyper)polarizability physical effect
α(0; 0) static polarizability
α(−ω;ω) frequency-dependent polarizability
β(0; 0, 0) static first hyperpolarizability
β(−2ω;ω, ω) second harmonic generation (SHG)
β(−ω;ω, 0) dc-Pockels effect (dc-P);

electro-optical Pockels Effect (EOPE)
β(0;−ω, ω) optical rectification (OR)
γ(0; 0, 0, 0) static second hyperpolarizability
γ(−3ω;ω, ω, ω) third harmonic generation (THG)
γ(−2ω;ω, ω, 0) dc-second harmonic generation (dc-SHG);

electric field induced SHG (EFISH or ESHG)
γ(−ω;ω,−ω, ω) intensity-dependent refractive index (IDRI);

degenerate four wave mixing (DFWM)
γ(−ω1;ω1,−ω2, ω2) ac-Kerr effect (ac-K);

optical Kerr effect (OKE)
γ(−ω;ω, 0, 0) dc-Kerr effect (dc-K);

electro-optical Kerr effect (EOKE)
γ(0;ω,−ω, 0) dc-optical rectification (dc-OR);

electric field induced optical rectification (EFIOR)

where the Einstein summation have been used. Rp represents both excitations and deexci-
tations

Rp =

|p〉〈0| p>0

|0〉〈p| p<0
. (3.22)

|p〉 denotes an excited state state which fulfills the time-independent Schrödinger equation

Ĥ0|p〉 = Ep|p〉 , (3.23)

and is orthonormal to all other excited states

〈p|n〉 = δpn. (3.24)
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The time-dependent response parameters xp(t) in Eq. (3.21) are collected in a vector x(t)

and determine the response of the reference state to the perturbation. x(t) can be expanded
in powers of the perturbation

x(t) = x(1)(t) + x(2)(t) + . . . (3.25)

where the zeroth-order coefficient vanishes due to the Brillouin theorem [84].
Analogously to the potential expansion in Eq. (3.7), a time-dependent state |0̃〉 may

be determined using the quasi-energy formulation. The parameters in Eq. (3.25) may be
expanded in terms of their frequency components

x(1)(t) =
∑
b

exp(−iωbt)xωb ; xωb = εbx
b , (3.26a)

x(2)(t) =
∑
b,c

exp(−iωbct)xωbc ; xωbc =
1

2
εbεcx

bc , (3.26b)

. . .

x(f)(t) =
∑
b,...,f

exp(−iωb...f t)xωb...f ; xωb...f =
1

f !
εb . . . εfx

b...f , (3.26c)

where ωbc = ωb + ωc, ωb...f = ωb + . . . + ωf , . . . . The time derivative of a general response
vector ẋ(f)(t) may be written in a simple form

ẋ(f)(t) = −i
∑
b,...,f

ωb...f exp(−iωb...f t)xωb...f . (3.27)

Using the exponential parameterization in Eq. (3.20), the quasi-energy in Eq. (3.10) takes
the form

Q(t) = 〈0| exp[−X(t)](Ĥ − i ∂
∂t

) exp[X(t)]|0〉 , (3.28)

which leads to the time-averaged quasi-energy

{Q(t)}T =
{
〈0|Ĥ − i ∂

∂t
+ [Ĥ,X(t)]− iẊ(t) +

+1
2

[
[Ĥ,X(t)]− iẊ(t), X(t)

]
+ . . . |0〉

}
T
, (3.29)

where the Baker-Campbell-Hausdorff (BCH) expansion and the commutator relation

[Ĥ − i ∂
∂t
, X(t)] = [Ĥ,X(t)]− iẊ(t) , (3.30)

have been used. The time-averaged quasi-energy {Q(t)}T is variational with respect to all
response parameters, e.g. xωb...gp . Using Eq. (3.29), Eq. (3.13) may be written as

0 =
∂{Q(t)}T
∂x

ωb...g
p

=

{
〈0|[Ĥ, Rp]− ωb...gRp + 1

2

[
[Ĥ, Rp]− ωb...gRp, X(t)

]
+

+ 1
2
[[Ĥ,X(t)]− iẊ(t), Rp] +O(X2)|0〉 exp(−iωb...gt)

}
T

, (3.31)
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where Eq. (3.26c) and (3.27) have been used. O(X2) denotes second- and higher-order terms.
Response equations to arbitrary order may now be determined by differentiation of Eq. (3.31)
with respect to the perturbation strengths.

3.1.5 The first-order equations

The first-order response equation for xb is obtained by differentiating Eq. (3.31) with respect
to εb

0 =
d

dεb

(
∂{Q(t)}T
∂x

ωb...g
p

)∣∣∣∣
ε=0

=

{
〈0|[B,Rp] + 1

2

[
[Ĥ0, Rp]− ωb...gRp, Rq

]
xbq

+1
2

[
[Ĥ0, Rq]− ωbRq, Rp

]
xbq|0〉 exp(−i(ωb + ωb...g)t)

}
T

, (3.32)

where the Einstein summation is used for the repeated index q. Eq. (3.32) may be written
as (

− 1
2
〈0|
[
[Ĥ0, Rp], Rq

]
+
[
[Ĥ0, Rq], Rp

]
|0〉 − ωb〈0|[Rp, Rq]|0〉

)
xbq = 〈0|[B,Rp]|0〉 , (3.33)

or in a more convenient form
(E[2] − ωbS[2])xb = gb , (3.34)

where xbq have been collected to xb, and the generalized Hessian E[2], metric matrix S[2] and
the gradient vector gb have been defined as

E[2]
pq = −1

2
〈0|
[
[Ĥ0, Rp], Rq

]
+
[
[Ĥ0, Rq], Rp

]
|0〉 , (3.35)

S[2]
pq = 〈0|[Rp, Rq]|0〉 , (3.36)

gbp = 〈0|[B,Rp]|0〉 . (3.37)

The E[2] and S[2] matrices have block structures

E[2] =

(
A B

B? A?

)
; S[2] =

(
Σ ∆

−∆? −Σ?

)
, (3.38)

and their detailed composition will be discussed in Section 3.2.2. Inserting the explicit
expression for Rp in Eq. (3.22) into Eq. (3.35), E[2] and S[2] may be written in diagonal form

E[2] =

(
ωk 0

0 ω∗k

)
; S[2] =

(
1 0

0 −1

)
, (3.39)
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where ωk is a diagonal matrix containing the excitation energies.
Using the diagonal structure of the matrices in Eq. (3.39) and assuming that ω?k = ωk,

the first-order response equation in Eq. (3.34) may be written as(
1xbk

2xb−k

)
=

(
(ωk − ωb)−1 0

0 (ωk + ωb)
−1

)(
1gb−k
2gbk

)
, (k > 0) , (3.40)

where ωb is a diagonal matrix with the frequency ωb in all diagonal elements. xb and gb

have been divided into two sub-vectors to emphasize that the upper and lower parts of xb

decouple due to the diagonal structure of E[2] and S[2].

3.1.6 Higher-order equations

The structure of the set of linear equations in Eq. (3.34) can be reproduced for all higher-order
response parameters. The f ’th order response equation (f≥2) is obtained by differentiating
Eq. (3.31) with respect to the perturbation strength parameters {εb, . . ., εf}

0 =
df

dεb . . . dεf

{
〈0|[Ĥ, Rp]− ωb...gRp + 1

2

[
[Ĥ, Rp]− ωb...gRp, x(t)

]
+

+ 1
2
[[Ĥ, x(t)]− iẋ(t), Rp] +O(x2)|0〉 exp(−iωb...gt)

}
T

∣∣∣∣
ε=0

. (3.41)

Eq. (3.41) may be written as

0 =

{(
〈0|1

2

[
[Ĥ0, Rp]− ωb...gRp, Rq

]
xb...fq +

+ 1
2

[
[Ĥ0, Rq]− ωb...fRq, Rp

]
xb...fq |0〉+ gb...fp

)
exp(−i(ωb...f + ωb...g)t)

}
T

, (3.42)

where the right-hand side vector gb...f contains only response parameters of orders (f−1) and
lower. After rearrangement and insertion of Eqs. (3.35) and (3.36) the f ’th order response
equation reads

(E[2] − ωb...fS[2])xb...f = gb...f . (3.43)

By comparing Eqs. (3.34) and (3.43), it can be seen that all response equations may be
formulated as a system of linear equations of the same form.

The general f ’th order response equation in Eq. (3.43) may be written as(
1xb...fk

2xb...f−k

)
=

(
(ωk − ωb...f )−1 0

0 (ωk + ωb...f )
−1

)(
1gb...f−k
2gb...fk

)
, (k > 0) , (3.44)

that is similar to the first-order response equation in Eq. (3.40)
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3.2 Approximate Standard Response Theory

In the previous section, the time evolution of an exact wavefunction has been discussed.
However, in practice only approximate wavefunctions are available, and response theory
therefore has to be considered for such a wavefunction. In this section, the response theory
introduced in Section 3.1 will be considered for the HF model discussed in Section 2.1.

In Section 3.2.1, response equations for HF approximate state are derived. Structures
of the response matrices are discussed in Section 3.2.2. In Section 3.2.3, the linear-scaling
framework for solving response equations is introduced.

3.2.1 Response equations for the Hartree–Fock response theory

In the HF approximation, the wavefunction in the second quantization formulation is given
by

|0〉 = a†iβa
†
iαa
†
jβa
†
jα . . . a

†
lβa
†
lα|vac〉 . (3.45)

a†iβa
†
iαa
†
jβa
†
jα . . . a

†
lβa
†
lα refers to the set of orthonormal spin-orbitals that are occupied in |0〉,

and a†iα and a†iβ refer to spin-orbitals with spin α and β, respectively.
When a time-dependent external field is applied to the system, the wavefunction in

Eq. (3.45) changes into another single determinant wavefunction |0̃〉. This time-dependence
can be introduced (using an exponential parameterization) for the phase-isolated wavefunc-
tion for the perturbed system

|0̃〉 = exp(iκ̂)|0〉 , (3.46)

where κ̂ is a Hermitian operator of the form [10]

κ̂ =
∑
PQ

κPQ(t)(a†PαaQα + a†PβaQβ) =
∑
p

κp(t)Rp , (3.47)

for the external field of a singlet symmetry. Indices PQ have been combined to a common
index p in Rp, and summation runs over both positive and negative indices.

The parameters κ can be expanded in powers of the perturbation [analogously to Eq. (3.25)]

κ = κ(1)(t) + κ(2)(t) + · · · , (3.48)

where the zeroth-order coefficient vanishes due to the Brillouin theorem [84].
Since the HF wavefunction |0〉 is variational, a time-dependent HF state |0̃〉 may be

determined using the quasi-energy formulation in a way analogous to the one described in
Section 3.1.4. The parameters in Eq. (3.25) may be expanded in terms of their frequency
components as in Eqs. (3.26a)–(3.26c). Using the exponential parameterization in Eq. (3.46),
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the time-averaged quasi-energy may be obtained similarly to Eqs. (3.28) and (3.29). Since the
time-averaged quasi-energy {Q(t)}T is variational with respect to all response parameters,
Eq. (3.13) may be rewritten as

0 =
∂{Q(t)}T
∂κ

ωb...g
p

=

{
〈0|[Ĥ, Rp]− ωb...gRp + 1

2

[
[Ĥ, Rp]− ωb...gRp, κ(t)

]
+

+1
2
[[Ĥ, κ(t)]− iκ̇(t), Rp] +O(κ2)|0〉 exp(−iωb...gt)

}
T

, (3.49)

which is similar to Eq. (3.31). Response equations may be determined by differentiation of
Eq. (3.49) with respect to the perturbation strengths, as shown in Section 3.1. The first-
order equations are in the form of Eq. (3.34), where κbq parameters have been collected into
xb, which for the approximate wavefunctions will be denoted as X. 2 Both in the exact and
the approximate theories the Hessian and metric matrices have the block structure given in
Eq. (3.38). Due to the fact that the structures are not identical, as described in details in
the next section, the Hessian and metric matrices for an approximate state will be denoted
as E[2] and S[2], respectively.

3.2.2 The structure of the response matrices E[2] and S[2]

The Hessian and metric matrices, for both exact and approximate wavefunction, are sym-
metric matrices of the block structure given in Eq. (3.38), where

Apq = 〈0|[[Ĥ0, R−p], Rq]|0〉, Bpq = 〈0|[[Ĥ0, R−p], R−q]|0〉,
Σpq = 〈0|[R−p, Rq]|0〉, ∆pq = 〈0|[R−p, R−q]|0〉 .

(3.50)

Rp and R−p refer to excitation and deexcitation operators, respectively. A, B and Σ in
Eq. (3.38) are symmetric, and ∆ is antisymmetric, in both exact and approximate response
theory [16]. For the exact state, Rp in Eq. (3.50) is defined in Eq. (3.22), whereas for the
approximate wavefunction it is given as

Rp = RAI = 1√
2
(a†AαaIα + a†AβaIβ) . (3.51)

I and A refer to occupied and unoccupied molecular orbital (MO) indices, respectively.

For a closed shell system and the HF reference state |0〉 given in Eq. (3.45), the elements
of A, B, Σ and ∆ become [85]

Apq = AAI,BJ = δABδIJ(εA − εI) + (AI|JB)− (AB|IJ) , (3.52a)

2Italic/Roman notation will be used for response vectors and matrices in the approximate response theory.
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Bpq = BAI,BJ = (AI|BJ)− (AJ |BI) , (3.52b)

Σpq = δABδIJ , ∆pq = 0 , (3.52c)

where (PQ|RS) is a two-electron integral in the MO basis. For KS-DFT theory, the two-
electron integrals in Eqs. (3.52a) and (3.52b) have to be modified and an exchange-correlation
contribution is added [86].

In exact response theory, E[2] is given in Eq. (3.39). In the approximate response theory,
the E[2] matrix can be split into the zeroth and first-order contributions

E[2] = E
[2]
0 +E

[2]
1 . (3.53)

E
[2]
0 is a diagonal matrix containing the molecular orbital energy differences

E
[2]
0 =

(
εA − εI 0

0 εA − εI

)
, (3.54)

and E[2]
1 contains the electron-electron repulsion contributions to E[2] as can be seen from

Eqs. (3.52a) and (3.52b). For KS-DFT, an exchange-correlation contribution has to be added
to E[2]

1 . The metric matrix S[2] in the MO representation is identical to the S[2] for the exact
state denoted in Eq. (3.39).

The solution vectors in Eq. (3.40) can also for an approximate state be written in the
two-component form

X =

(
XAI

XJB

)
. (3.55)

XAI and XJB are the excitation and deexcitation components, respectively.
The eigenvectors of the response eigenvalue equation

E[2]Xk = ωkS
[2]Xk; E[2]X−k = −ωkS[2]X−k (3.56)

can be chosen to be orthogonal with respect to the inner product induced by E[2] and to
satisfy a generalized normalization condition for S[2]

X†lE
[2]Xk = ωk0δkl; X†l S

[2]Xk = sgn(k)δkl , (3.57)

respectively [16]. The excitation vectors may be collected as the columns of an eigenvector
matrix X with the positive-sign eigenvectors collected first, followed by the negative-sign
vectors [24]

X = {. . . ,Xk, . . . ,X−k, . . . } . (3.58)
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In matrix form, Eq. (3.57) becomes

X†E[2]X =

(
ωk 0

0 ω?k

)
; X†S[2]X =

(
1 0

0 −1

)
, (3.59)

where ωk is a diagonal matrix containing the excitation energies [16], in analogy to exact
theory in Eq. (3.39).

For the ground state, E[2] is a positive definite matrix. To see this, E[2] may be trans-
formed to block diagonal form using the unitary matrix U

U =
1√
2

(
1 −1

1 1

)
, (3.60)

giving

U †E[2]U =

(
A+B 0

0 A−B

)
. (3.61)

A−B represents a stability condition [87] with respect to real variations in the wave function
|0〉, while A +B is the stability condition with respect to an imaginary variation. For |0〉
being a ground state, both A − B and A + B are positive definite implying that E[2] is
positive definite.

It should be noted that E[2] and S[2] in the AO representation have the forms [24]

E[2] =


A L B

L† N LT

B? L? A?

 ; S[2] =


Σ θ ∆

θ† ε −θT
−∆? −θ? −Σ?

 (3.62)

where the explicit forms of A, B, Σ and ∆ given in Eq. (3.50)3 and

Lij = 〈0|[[Ĥ0, Ri], Dj]|0〉, Nij = 〈0|[[Ĥ0, Di], Dj]|0〉,
θij = 〈0|[Ri, Dj]|0〉, εij = 〈0|[Di, Dj]|0〉

(3.63)

where R†i , D
†
i and Ri are defined as

R†i = a†µaν , µ > ν,

D†i = a†µaµ,

Ri = a†νaµ, µ > ν.

(3.64)

µ, ν refer to atomic orbital indices and the ε matrix vanishes for real orbitals.
3Matrices have the same form [given in Eq. (3.50)] in both MO and AO representations. The difference is

that Rp in Eq. (3.50), is given by Eq. (3.51) in MO representation and by Eq. (3.64) in AO representation.
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3.2.3 Linear-scaling framework

The major challenge in the computation of the linear and quadratic response functions is to
obtain the solution to the set of response equations of the form in Eq. (3.43). In Ref. [23],
Coriani et al. presented a linear-scaling implementation of HF and KS-DFT response equa-
tions for calculations of frequency-dependent molecular properties and excitation energies.
The response equations are solved iteratively, using an AO basis subspace method. In order
to obtain linear scaling the evaluation of all terms entering the response functions must scale
linearly.

Since the linear equations are solved iteratively, the explicit forms of the generalized
Hessian matrix E[2] and the metric matrix S[2] are not required. Linear transformations on
vector b, are defined as [23,88]

σ = E[2](b) = F[b,D]SS− S[b,D]SF + G([b,D]S)DS− SDG([b,D])S , (3.65)

ρ = S[2](b) = S[b,D]SS , (3.66)

where F is the Fock/KS matrix defined in Eq. (2.16), D is the AO density matrix given in
Eq. (2.17) and S is the AO overlap matrix in Eq. (2.15). G(D) denotes the Coulomb and ex-
change contributions and for the perturbation field of singlet symmetry is given in Eq. (2.18).
In KS-DFT, there is an additional contribution to G(D) from the exact-correlation potential.

The response theory formulation is based on atomic orbitals to exploit locality. Since
the transformations in Eqs. (3.65) and (3.66) are based on matrix-matrix multiplications,
significant savings can be obtained using sparse algebra, and linear-scaling can be achieved
for this method.
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4 Damped Response Theory

As mentioned in the previous chapter, to obtain frequency-dependent molecular proper-
ties, response equations need to be solved. Standard response functions have singularities
when one or more of the optical frequencies equals an excitation energy [16], which leads to
divergence when solving the response equations and an unphysical behavior for molecular
properties. To obtain the correct physical behavior at resonance frequencies, the excited
states damping factor (γ), also called an inverse effective lifetime or an excited-state lifetime
broadening parameter [28–34], has been introduced.

In Ref. [28], Norman et al. extended the standard response theory formulation,4 to
include a phenomenological damping term that effectively introduces finite lifetimes of the
excited states [34]. The approach by Norman et al. has been successfully applied to calculate
a wide range of linear molecular properties including one-photon absorption (OPA) spectra
and dispersion coefficients [29, 33, 89–94], optical rotation and electronic circular dichroism
spectra [95–99], X-ray absorption and natural circular dichroism spectra [100–105], the dy-
namic dipole magnetizability [106] and relativistic linear response functions [107]. Nonlinear
properties such as Raman scattering [108–118], the electro-optical Kerr effect, magnetic cir-
cular dichroism spectra [119–121] and the two-photon resonant enhanced second-harmonic
generation response [28] corresponding to residues of the quadratic response function have
also been addressed.

In Ref. [33] (Paper A), the quasi-energy formulation of the damped response theory has
been presented. The use of the quasi-energy formulation allows to obtain directly the compu-
tationally simplest expressions for damped response functions by applying a set of response
parameter elimination rules [45], which minimize the total number of damped response equa-
tions to be solved. In addition, in this formulation, perturbation-dependent basis sets by
Thorvaldsen et al. [122] may easily be used to obtain gauge-origin independent results.

In Section 4.1, phenomenological damping of excited states is introduced. Exact damped
response theory is described in Section 4.2. In Section 4.3 damped response equations are
analyzed and the structure of damped response vectors at different frequencies is discussed
in Section 4.4. In Section 4.5 and 4.6 damped linear and quadratic response theories are
described, respectively. Damped response theory for an approximate state is given in Sec-
tion 4.7 and in Section 4.8, comparison to the approach by Norman et al. [28] is presented.

4The formulation of the standard response theory based on the Ehrenfest theorem [15].
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4.1 Phenomenological damping of excited states

A molecular system described by the Hamiltonian Ĥ0 and characterized by Eqs. (3.23) and
(3.24) is considered. The time-dependent excited state |n(t)〉 obtained by multiplying |n〉 by
an exponential phase factor

|n(t)〉 = e−iEnt|n〉 , (4.1)

trivially satisfies the time-dependent Schrödinger equation

i
∂|n(t)〉
∂t

= H0|n(t)〉 = En|n(t)〉 . (4.2)

The norm of |n(t)〉 is constant in time, 〈n(t)|n(t)〉 = 〈n|n〉 = 1, and no decay occurs from
the excited state to the ground state (or other excited states), suggesting that the lifetime
of the excited state |n(t)〉 is infinite. In reality, an excited state has a finite lifetime which is
not readily described by the Hamiltonian Ĥ0. However, a phenomenological description of
the lifetime may be introduced by multiplying Eq. (4.1) with an exponential damping factor
e−

1
2

Γnt to obtain the damped excited state |n̄(t)〉 [30–32]

|n̄(t)〉 = e−
1
2

Γnt|n(t)〉 = e−i(En−
i
2

Γn)t|n〉 . (4.3)

The norm of the damped excited state |n̄(t)〉 decays exponentially in time

〈n̄(t)|n̄(t)〉 = e−Γnt , (4.4)

and Γ−1
n may therefore be interpreted as the lifetime of the excited state |n̄(t)〉, i.e. the time

it takes before the population of the excited state has decreased by a factor of e−1.
The non-damped state |n(t)〉 in Eq. (4.2) has a real energy En. By contrast, the damped

excited state |n̄(t)〉 does not possess a well-defined real energy due to its finite lifetime

i
∂|n̄(t)〉
∂t

= (En − i
2
Γn)|n̄(t)〉 . (4.5)

The damping of the excited states is effectively obtained by introducing complex excitation
energies Ēn

En → Ēn = En − iγn; γn = 1
2
Γn , (4.6)

for all excited states |n(t)〉, as may be seen comparing Eqs. (4.1) and (4.3).
In standard response theory (described in Chapter 3), transitions between the ground

state and excited states are described in terms of oscillator strengths that are obtained from
residues of response functions. This gives rise to a delta-peaked residue spectrum (absorp-
tion spectrum). In an experimental absorption spectrum, the peaks are broadened and the



4. DAMPED RESPONSE THEORY 31

oscillator strength is obtained by integration over the absorption band representing the elec-
tronic transition. The broadening of the electronic absorption bands may be associated with
contributions arising from different physical phenomena:

• The isolated, non-moving molecule possesses a finite lifetime due to spontaneous emis-
sion which gives rise to an energy uncertainty manifested in a broadening of the ab-
sorption bands.

• The vibrational substructure of electronic absorption spectra leads to a broadening of
the absorption bands.

• In an experiment, the molecules are moving relative to the detector which leads to
Doppler broadening.

• Collisions among molecules perturb the electron densities and therefore the excited
state energies leading to a broadening of the absorption bands.

The broadening of the absorption bands has been performed theoretically using a phe-
nomenological description where an effective lifetime is introduced to account for the above
physical phenomena [28–35]. In practice the broadening related to all the above phenomena
is treated collectively and therefore the same lifetime Γ−1 = (2γ)−1 is used for all excited
states [28, 29,33], where γ is an empirical parameter. In that case Eq. (4.6) simplifies to

En → Ēn = En − iγ . (4.7)

In response theory, the excited state energy En always enters in combination with the ground
state energy E0 as the excitation energy ωn = En − E0, and Eq. (4.7) then corresponds to
the replacement

ωn → ω̄n = ωn − iγ, (4.8)

since the lifetime of the ground state is infinite and consequently Γ0 = 0.

Response function theory where the replacement in Eq. (4.8) is carried out, is called
damped response theory. When the damped response theory is used, singularities of the
response functions at resonance frequencies are removed. For real perturbations operators,
the real and the imaginary component of the damped response functions describes dispersion
and absorption processes, respectively.

Molecular absorption properties in damped response theory will have an imposed Loren-
tzian line-shape function, which is identical to the one obtained from the solution to the
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Schrödinger equation for a two-state system, where the coefficient of the upper level is re-
quired to decay exponentially in time [123]. The line-shape function associated with pure
Doppler broadening is Gaussian, whereas the line-shape function describing pure collision
broadening is Lorentzian (see e.g. Ref. [124]). The experimental line-shape function is more
complicated, as it encompasses all the phenomena discussed above, but the structure of an
absorption spectrum obtained using damped response theory will be qualitatively correct.

In standard response theory the absorption spectra are obtained by superimposing Loren-
tzian line-shape functions onto the stick spectra obtained by solving a generalized eigenvalue
problem. This approach is feasible for small systems, which have a relatively low density
of low lying excited states. In case of large molecular systems with a high density of low
lying states, it may be difficult to determine the absorption spectra using standard response
theory. The damped response theory can be used to determine the absorption spectra in the
whole frequency range. The spectra obtained with standard and damped response theory
are similar.5

Throughout this chapter, a bar denotes a quantity in damped response theory, whereas
the bar is omitted for the corresponding quantity in standard (non-damped) response theory.

4.2 Introduction to the exact damped response theory

The response parameters are obtained by solving response equations that contain redefined
excitation energies [Eqs. (4.8)]. In damped response theory, the replacement in Eq. (4.8) is
carried out in E[2] in Eq. (3.39) to obtain the damped generalized Hessian Ē[2]

E[2] → Ē[2] =

(
ω̄k 0

0 ω̄?k

)
=

(
ωk − iγ 0

0 (ωk − iγ)?

)

=

(
ωk − iγ 0

0 ωk + iγ

)
= E[2] − iγS[2] , (4.9)

where γ is a diagonal matrix containing the damping parameter γ.

Excitation energies also occur in higher-order E[g] matrices (g≥3) defined from the g’th
order term of the BCH expansion of the quasi-energy in Eq. (3.29)

E[g]
p1p2p3...pg

= 1
g!
〈0|
[
. . .
[
[Ĥ0, Rp1 ], Rp2

]
, . . . , Rpg

]
|0〉; (g ≥ 3) . (4.10)

5The one-photon absorption (OPA) spectra are identical for the standard and damped response theory.
Higher-order properties are not identical but similar, as will be discussed in Chapter 5.
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Excitation energies enter Eq. (4.10) due to the presence of Ĥ0. The substitution in Eq. (4.8)
for a general E[g] matrix may be carried out in the same manner as for E[2] in Eq. (4.9)

E[g] → E[g] − iγS[g] , (4.11)

where S[g] (g≥3) is given by

S[g]
p1p2p3...pg

= 1
g!
〈0|
[
. . . [Rp1 , Rp2 ], . . . , Rpg

]
|0〉; (g ≥ 3). (4.12)

Response functions and response equations are obtained as derivatives of Eq. (3.29) and
Eq. (3.31) with respect to the perturbation strengths. It may be seen that E[g] always occurs
in combination with −ωS[g] for a frequency ω and damped response theory may therefore be
obtained by making the replacement

E[g] − ωS[g] → E[g] − (ω + iγ)S[g] , (4.13)

whenever (E[g] − ωS[g]) occurs in either the response equations or in the expressions for
response functions. For odd values of g, E[g] and S[g] are zero in exact theory. In approximate
theories S[g] is also zero for odd values of g and therefore the replacement in Eq. (4.13) is
only important for even values of g in both exact and approximate theories.

Excitation energies occur in response function theory only in connection with the E[g]

matrix, and therefore damped response function theory may be obtained from the standard
response function theory, simply by making the replacement in Eq. (4.13).

4.3 Analysis of the damped response equations

From Eqs. (3.34) and (4.9), the damped first-order response equation may be written as[
E[2] − (ωb + iγ)S[2]

]
x̄b = gb . (4.14)

x̄b is the complex damped response vector (x̄b = x̄bR + ix̄bI), whereas in standard theory it
is either purely real (e.g. when the perturbing operator B is an electric dipole operator) or
purely imaginary (e.g. when B is a magnetic dipole operator). The first-order right-hand
side vector gb is identical to the right-hand side vector in standard theory in Eq. (3.37) as it
does not depend on the excitation energies. Eq. (4.14) can be written out explicitly(

1x̄bk
2x̄b−k

)
=

(
(ωk − ωb − iγ)−1 0

0 (ωk + ωb + iγ)−1

)(
1gb−k
2gbk

)
, (k > 0) . (4.15)
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Expressing the elements of the [E[2] − (ωb + iγ)S[2]]−1 matrix and the right-hand side
vector gb in terms of their real and imaginary components allows to separate Eq. (4.15) into
two equations for the real and the imaginary component of x̄b, respectively(

1x̄bR
2x̄bR

)
=

(
D(ωb) 0

0 D(−ωb)

)(
1gbR
2gbR

)
−
(
A(ωb) 0

0 −A(−ωb)

)(
1gbI
2gbI

)
, (4.16a)(

1x̄bI
2x̄bI

)
=

(
A(ωb) 0

0 −A(−ωb)

)(
1gbR
2gbR

)
+

(
D(ωb) 0

0 D(−ωb)

)(
1gbI
2gbI

)
. (4.16b)

D and A are diagonal matrices containing the dispersion and the absorption line-shape
functions, respectively

Dk(ω) =
ωk − ω

(ωk − ω)2 + γ2
; Dk(−ω) =

ωk + ω

(ωk + ω)2 + γ2
, (4.17a)

Ak(ω) =
γ

(ωk − ω)2 + γ2
; Ak(−ω) =

γ

(ωk + ω)2 + γ2
. (4.17b)

The index convention for excitation energies ωk = ω−k has been used and thus Dk = D−k
and Ak = A−k. Dk(ω) and Dk(−ω) are antisymmetric and zero at ω = ωk and ω = −ωk,
respectively, whereas the Lorentzian functions Ak(ω) and Ak(−ω) are symmetric and reach

!n -!b

" = 2#

(a)

!n -!b

(b)

#

Figure 4.1: (a) Absorption line-shape function An(ω) = γ
(ωn−ω)2+γ2

as a function of ω. The
full width at half maximum equals the inverse lifetime Γ = 2γ; (b) Solid line: Dispersion
line-shape function Dn(ω) = ωn−ω

(ωn−ω)2+γ2
as function of ω. Dashed line: Dispersion line-

shape function for γ = 0 where a pole is obtained at ω = ωn. Note that the two functions
approach each other when ω is off-resonance.
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their maximum values at ω = ωk and ω = −ωk, respectively. Line-shapes of dispersion
Dn(ω) and absorption An(ω) functions are plotted in Fig. 4.1.

4.4 The structure of the damped response vector

In this section, the structures of the damped response vectors at different frequencies are
discussed. In Sections 4.4.1 and 4.4.2, response vectors of the first- and higher-order damped
response equations are analyzed, respectively.

For real wavefunctions, the right-hand side vector is either purely real or purely imaginary.
To simplify the discussion, it can be assumed that gbI = 0.

4.4.1 The first-order damped response equation

Using the assumption that the right-hand side vector is purely real, the first-order equations
in Eqs. (4.16a) and (4.16b) become(

1x̄bR
2x̄bR

)
=

(
D(ωb) 0

0 D(−ωb)

)(
1gbR
2gbR

)
, (4.18a)(

1x̄bI
2x̄bI

)
=

(
A(ωb) 0

0 −A(−ωb)

)(
1gbR
2gbR

)
. (4.18b)

The structure of the damped response vectors differs depending on whether the optical
frequency is close to an excitation energy or in a far-off-resonance region.

The p’th element of the real part of the response vector may be identified from Eq. (4.18a)
as

(x̄bR)p = Dp(±ωb)(gbR)−p , (4.19)

where the plus sign corresponds to an element in the upper part of x̄bR and the minus sign
refers to an element in the lower part of x̄bR. Since the inverted effective lifetime of the
excited states is much smaller than the optical frequencies, and assuming that the excited
states are all non-degenerate, in the resonance region the n’th element (x̄bR)n in Eq. (4.19) is
much larger than the remaining elements (x̄bR)p (p 6= n) at ωb ≈ ωn. This is due to the fact
that Dp(±ωb) goes to zero when ωb is far from ±ωp, and the following approximation may
be applied

(x̄bR)p ≈ Dp(ωb)(gbR)−pδpn (ωb ≈ ωn) . (4.20)

As may be seen from the plot of Dn(ωb) in Fig. 4.1b, close to resonance, (x̄bR)n is the dominant
element in the x̄bR response vector.
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From Eq. (4.18b), the p’th component of x̄bI is given by

(x̄bI)p = ±Ap(±ωb)(gbR)−p . (4.21)

The dominating element of x̄bI at ωb ≈ ωn is (x̄bI)n, since the line-shape function Ap(±ωb) goes
to zero when ωb is far from the excitation energy, and therefore the imaginary component
of the damped response parameter is proportional to the residue of the standard response
parameter at ωb = ωn.

In the off-resonance region, γ2 may be omitted in the denominator of the dispersion
line-shape function in Eq. (4.17a) [since γ � (ωb ± ωk)] and Eq. (4.18a) may be written as(

1x̄bR
2x̄bR

)
≈
(

(ωk − ωb)−1 0

0 (ωk + ωb)
−1

)(
1gbR
2gbR

)
(off-resonance) . (4.22)

By comparing Eq. (4.22) to the standard first-order response equation Eq. (3.40) it can be
seen that the real part of the damped response vector x̄bR and the standard response vector
xb are approximately equal at off-resonance frequencies. It can be also seen in Fig. 4.1b
that the dispersion line-shape function Dn(ω) approaches the standard line-shape function
(γ = 0) at off-resonance frequencies.

At off-resonance frequencies, the imaginary part of the solution vector x̄bI in Eq. (4.18b) is
very small, since the absorption line-shape function in Eq. (4.17b) goes to zero (see Fig. 4.1a).

4.4.2 The f ’th order damped response equation

The results obtained for the damped first-order response parameters may easily be general-
ized to the f ’th order response equation (f ≥ 2). The general f ’th order response equation[

E[2] − (ωb...f + iγ)S[2]
]
x̄b...f = ḡb...f , (4.23)

may be written in the same way as the first-order equation in Eq. (4.15)(
1x̄b...fk

2x̄b...f−k

)
=

(
(ωk − ωb...f − iγ)−1 0

0 (ωk + ωb...f + iγ)−1

)(
1ḡb...f−k
2ḡb...fk

)
, (4.24)

and the real and imaginary components of x̄b...f = x̄b...fR + ix̄b...fI may therefore be written as(
1x̄b...fR

2x̄b...fR

)
=

(
D(ωb...f ) 0

0 D(−ωb...f )

)(
1ḡb...fR

2ḡb...fR

)

−
(
A(ωb...f ) 0

0 −A(−ωb...f )

)(
1ḡb...fI

2ḡb...fI

)
, (4.25a)
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and (
1x̄b...fI

2x̄b...fI

)
=

(
A(ωb...f ) 0

0 −A(−ωb...f )

)(
1ḡb...fR

2ḡb...fR

)

+

(
D(ωb...f ) 0

0 D(−ωb...f )

)(
1ḡb...fI

2ḡb...fI

)
, (4.25b)

respectively, which is equivalent to Eqs. (4.16a) and (4.16b).

4.5 Damped linear response theory

In standard response theory the linear response function is given by Eq. (3.16). The response
parameters xbp in Eq. (3.40) are the only quantities that depend on the excitation energies,
and therefore the damped linear response function may be obtained from Eq. (3.16) by
replacing the standard response parameters xbp by the damped response parameters x̄bp

〈〈A;B〉〉ωb = 〈〈A;B〉〉Rωb + i〈〈A;B〉〉Iωb , (4.26)

where

〈〈A;B〉〉Rωb = (gaR)p(x̄
b
R)p , (4.27a)

〈〈A;B〉〉Iωb = (gaR)p(x̄
b
I)p . (4.27b)

Using the assumption in Eq. (4.20), in the resonance region (ωb ≈ ωn), the n’th element of
the response vector in Eq. (4.27a) qualitatively determines the overall structure of 〈〈A;B〉〉Rωb

〈〈A;B〉〉Rωb ≈ Dn(ωb)(g
a
R)n(gbR)−n (ωb ≈ ωn) . (4.28)

If γ = 0 in Eq. (4.28), 〈〈A;B〉〉Rωb reduced to the standard response function 〈〈A;B〉〉ωb ,
which has a pole at ωb = ωn. The standard response equation thus diverges at ωb = ωn as
illustrated by the dotted curve in Fig. 4.1b. In the damped response theory the divergence
at ωb = ωn is avoided and a physically correct behavior over the entire frequency range is
obtained.
〈〈A;B〉〉Iωb is proportional to the residue of the linear response function 〈〈A;B〉〉ωb→ωn .

The plot of An(ωb) in Fig. 4.1b shows the behavior of 〈〈A;B〉〉Iωb at ωb ≈ ωn. It is clear that
〈〈A;B〉〉Iωb represents a residue spectrum with a peak broadening of Γ = 2γ at full width
half maximum. In general, a residue spectrum describes an absorption process, e.g. if A and
B are components of the electric dipole operator [see Eq. (3.18a)], then A0nBn0 describes a
component of the transition strength matrix for the |0〉→|n〉 transition.
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In the off-resonance region the real part of the damped response function approximately
equals the standard response function

〈〈A;B〉〉Rωb ≈ 〈〈A;B〉〉ωb (off-resonance) , (4.29)

whereas the imaginary part of the damped linear response function in Eq. (4.27b) is approx-
imately zero

〈〈A;B〉〉Iωb ≈ 0 (off-resonance) . (4.30)

4.6 Damped quadratic response theory

The standard quadratic response function may be written as

〈〈A;B,C〉〉ωb,ωc = A[2]
pqx

b
px

c
q +B[2]

pq x
a
px

c
q + C [2]

pq x
a
px

b
q . (4.31)

Since the excitation energies only enter in Eq. (4.31) via the first-order response vectors,
〈〈A;B,C〉〉ωb,ωc is obtained by replacing the standard response vectors (xa, xb, and xc) by
the corresponding damped response vectors (x̄a, x̄b, and x̄c)

〈〈A;B,C〉〉ωb,ωc = A[2]
pq x̄

b
px̄

c
q +B[2]

pq x̄
a
px̄

c
q + C [2]

pq x̄
a
px̄

b
q , (4.32)

where the damped response vectors x̄a, x̄b, and x̄c are determined from Eq. (4.14). The A[2]

matrix is defined as

A[2]
pq =


−Ãpq for p < 0; q > 0

−Ãqp for p > 0; q < 0

0 otherwise

, (4.33)

where
Ãpq = Apq − A00δpq , (4.34)

and the notation introduced in Section 3.1.3 has been used.
The form of the damped response equations depend on the chosen elimination rule, due

to the fact that the Hellmann-Feynman theorem is not satisfied when an empirical damping
parameter is introduced. In Eq. (4.32), the damped quadratic response function is defined in
accordance with Wigner’s 2n+1 rule [45, 125] and according to the n+1 rule [45] it is given
as

〈〈A;B,C〉〉ωb,ωc =
∑
p

gap x̄
bc
p +

∑
pq

A[2]
pq x̄

b
px̄

c
q , (4.35)
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where the summations run over both positive and negative indices. gap is defined as

ga−p = −Ap0; gap = A0p . (4.36)

The second-order response vectors in Eq. (4.35) may be obtained from Eq. (4.24) where
(ωbc = ωb + ωc = −ωa) and the second-order right-hand side vector is given as

1ḡbc−k =
∑
p>0

(
B0pC̃pk

ωp − ωb − iγ
+

C0pB̃pk

ωp − ωc − iγ

)
, (4.37a)

2ḡbck = −
∑
p>0

(
B0pC̃pk

ωp + ωb + iγ
+

C0pB̃pk

ωp + ωc + iγ

)
. (4.37b)

As demonstrated in Paper C, using Eq. (4.32) for the damped quadratic response function
in derivation of higher-order properties, may lead to a cancellation of terms, resulting in
unphysical response functions, and therefore Eq. (4.35) should, instead, be used.6 However,
Eq. (4.35) is equivalent to Eq. (4.32), if x̄b and x̄c have the form of Eq. (4.15), whereas x̄a is
given as (

1x̄ak
2x̄a−k

)
=

(
(ωk − ωa + iγ)−1 0

0 (ωk + ωa − iγ)−1

)(
1ga−k
2gak

)
, (4.38)

and this form will be used in Chapter 5.
In approximate theory, E[3] is nonzero and in principle the replacement in Eq. (4.13) for

g = 3 should also be carried out

E[3] − ωS[3] → E[3] − (ω + iγ)S[3] . (4.39)

However, since S[3] is zero in variational approximate theories, this replacement is of no
significance in neither exact nor approximate theory.

Damped quadratic response functions are used in e.g. calculation of Magnetic Circular
Dichroism (MCD) as will be shown in Section 5.1. Damped cubic response theory in the
context of Two-Photon Absorption (TPA) will be considered in Section 5.2.

4.7 Damped response theory for a variational approximate state

The treatment of damped response theory for an exact state presented above may be gen-
eralized to approximate variational methods (such as HF, KS-DFT and CI), where the E[g]

6It has been concluded that the n+1 rule should be used in the damped response theory for higher-order
equations.
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and S[g] matrices enter in the same way as in exact theory. Therefore the procedure for
obtaining damped response functions in Section 4.2 may also be applied in these theories.
The only modification is that the excitation/deexcitation operator Rp in Eq. (3.22) must be
replaced by the corresponding operator in the approximate theory of interest.

To illustrate the equivalence between exact theory and a variational approximate theory,
it is convenient to express (E[2] − ωS[2])−1 in the form,

(E[2] − ωS[2])−1 =

(
(ωk − ω)−1 0

0 (ω∗k + ω)−1

)
=
∑
k>0

[
(ωk − ω)−1xkx

†
k + (ω∗k + ω)−1x−kx

†
−k
]

→
∑
k>0

[
(ωk − ω − iγ)−1xkx

†
k + (ωk + ω + iγ)−1x−kx

†
−k
]
, (4.40)

where Eq. (3.39) have been used. Complex excitation energies have been introduced accord-
ing to Eq. (4.8) and the excitation vectors xk are given by

(xk)p = δpk , (4.41)

and satisfy the generalized eigenvalue equation

E[2]xk = ωkS
[2]xk; E[2]x−k = −ωkS[2]x−k , (4.42)

which follows straightforwardly from Eqs. (3.39) and (4.41).

In HF, KS-DFT, and CI, the spectral representation of (E[2] − ωS[2])−1 [24] may be
introduced and complex excitation energies are obtained in analogy with Eq. (4.40)

(E[2] − ωS[2])−1 =
∑
k>0

[
(ωk − ω)−1XkX

†
k + (ω∗k + ω)−1X−kX

†
−k
]

→
∑
k>0

[
(ωk − ω − iγ)−1XkX

†
k + (ωk + ω + iγ)−1X−kX

†
−k
]
, (4.43)

where ωk is an excitation energy in approximate theory, and Xk is an eigenvector obtained
from the generalized eigenvalue problem in Eq. (3.56).

The equations in approximate theories are completely equivalent to the corresponding
equations in exact theory and therefore all damped response equations in approximate theory
have the form of Eq. (4.23) with approximate Hessian and metric matrices E[2] and S[2].
This structure of the damped response equations for a variational approximate state was
also obtained by Norman et al. [28, 29].
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4.8 Comparison to the approach by Norman et al.

The foundation for the formulation of damped response theory described above is the intro-
duction of complex excitation energies into standard response functions as discussed by Bar-
ron in Ref. [32] in combination with the quasi-energy formulation of response theory [43,44]
and the elimination rules of Ref. [45]. In the formulation presented by Norman et al. in
Ref. [28], the foundation for the treatment of finite lifetime effects in exact theory is the
damped Ehrenfest equation

∂
∂t
〈0̃|Rp|0̃〉 = −i〈0̃|[Rp, Ĥ]|0̃〉 − γ〈0̃|Rp|0̃〉 , (4.44)

where the second term on the right-hand side is added to the standard Ehrenfest equation
to obtain a phenomenological description of all damping effects [34]. The first-order damped
response equation is obtained by the substitution

ωS[2] → (ω + iγ)S[2] , (4.45)

and similarly for higher-order S[g] terms, equivalent to the replacement in Eq. (4.13). The
term −γS[2] is introduced from the last term on the right-hand side in Eq. (4.44).

In HF theory the starting point in the work by Norman et al. [28] is the HF counterpart
to the damped exact Ehrenfest equation in Eq. (4.44) which is given by

∂
∂t
〈0̃|t̂†p|0̃〉 − 〈0̃| ∂∂t t̂†p|0̃〉 = −i〈0̃|[t̂†p, H]|0̃〉 − γ〈0̃|q̂†p|0̃〉 , (4.46)

where q̂†p are orbital rotation operators, and t̂†p = exp[X(t)]q̂†p exp[−X(t)] are time-transformed
operators. The terms in Eq. (4.46) containing t̂†p constitute the standard Ehrenfest equa-
tion in HF theory [16], whereas the second term on the right-hand side has been added by
Norman et al. to describe all damping effects. The addition of −γ〈0̃|q̂†p|0̃〉 ensures that the
transition from standard to damped response theory in Eq. (4.45) is reproduced also in HF
theory.

The explicit form of a damped response function depends on the particular rule applied for
eliminating response parameters. Damped response theory based on solving the Ehrenfest
equation in Eq. (4.44) and identifying response functions from the average value of an A

operator gives response functions that are identical to the ones obtained within the quasi-
energy formalism by differentiating the generalized Hellmann-Feynman equation in Eq. (3.14)
(corresponding to the n+1 elimination rule where all response parameters referencing the
perturbation a are eliminated whereas all response parameters referencing bc . . . are kept).
The formulation presented by Norman et al. does not allow for a direct identification of
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response functions complying with one of the more general elimination rules described in
Ref. [45].
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5 Higher-order properties in damped response theory

In the previous chapter, damped response theory was introduced. It was shown that the
damped response equations may be solved in the whole frequency range, in contrast to the
standard response equations which have singularities in the resonance regions. Damped
response theory is important for large molecular systems, since it is impossible to determine
entire absorption spectrum using standard response theory, due to a high density of low lying
excited states, which is characteristic for large systems.

In this chapter, application of the damped response theory to higher-order properties,
such as Magnetic Circular Dichroism (MCD) in Section 5.1 and Two-Photon Absorption
(TPA) in Section 5.2 is presented.

5.1 Damped Magnetic Circular Dichroism

As discussed in Chapter 3, a system in the presence of a time-dependent external field
interacts with the field, and observables depend on the frequency of the field. When an
external magnetic field is applied to a molecule, it becomes optically active. This phe-
nomenon is known as Magneto-Optical Activity (MOA), and originates due to the fact that
the molecule interacts differently with the right and left circularly polarized components of
plane-polarized light. Two effects are observed:

• Magneto-Optical Rotation (MOR) – the rotation of the plane of polarization of the
emerging light in the transparent regions of the sample. MOR is conventionally ra-
tionalized in terms of the so-called Verdet constant [126], which is connected to the
dipole-dipole magnetic dipole hyperpolarizability [32,127,128].

• Magnetic Circular Dichroism (MCD) – an induced ellipticity of the incident linearly
polarized light, due to the differential absorption of left and right light components [32,
127–131].

MCD is traditionally rationalized in terms of three magnetic rotatory strengths, known
as the Faraday A, B and C terms [128,131–136]:

• The A term arises due to Zeeman splitting of spectral lines into left and right circu-
larly polarized components. The A term only contributes, if either the ground or the
excited state is degenerate. The small Zeeman splitting makes the oppositely signed
transitions from right and left circularly polarized light almost cancel out, that leads
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to the derivative shape of the band. The A term may be associated with the double
residue of an appropriate quadratic response function [16].

• The B term arises due to the field-induced mixing of energy levels. The B term describes
the MCD spectrum of an electronic transition in a molecule without degeneracies of
electronic states. It contributes to the spectrum with an absorption band shape. The
B term may be identified from a single residue of an appropriate quadratic response
function [16].

• The C term only appears, if the ground state is degenerate and will not be discussed
here.

The MCD spectrum may be obtained from the sum of A, B and C terms calculated for the
electronic transitions. However, this procedure is numerically unstable for near-degenerate
states. This instability may be avoided by using damped response theory (described in
Chapter 4) for higher-order equations [33, 119–121]. However, when this approach is used,
the individual Faraday A and B terms cannot be obtained directly. They can be extracted
from the spectral profile, however this approach may be problematic for spectra containing
overlapping bands, and valuable information may be lost. A solution to this problem can
be obtained using the combined standard and damped response theory, as proposed by
Kjærgaard et al. in Paper C.

In Section 5.1.1, it is shown how the ellipticity (and therefore the total MCD spectrum)
may be determined from a damped quadratic response function. In Section 5.1.2, perfor-
mance of the standard and damped response theory is compared for chosen systems with
nearly-degenerate states when the MCD spectrum is calculated.

5.1.1 Calculating the ellipticity using damped response theory

For plane-polarized light propagating in the Z direction of a space-fixed frame, the ellipticity
θ of a sample of randomly moving molecules in the presence of a magnetic field directed along
the Z axis, is given by [32] (see Appendix A in Paper C for details)

θ =
1

12
ωµ0clNεαβγRe

(
〈〈µα;µβ,mγ〉〉ω,0

)
BZ . (5.1)

mα and µα are the Cartesian components of the magnetic and electric dipole operator in the
molecular-fixed frame, ω is the optical frequency, N is the number density of molecules, µ0

is the permeability of vacuum, l is the length of the sample, and c is the speed of light in
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vacuum. The Einstein summation in connection with the Levi-Civita tensor εαβγ has been
used. Using the fact that

εαβγ〈〈µα;µβ,mγ〉〉ω,0 = εαβγ〈〈µγ;mβ, µα〉〉0,ω , (5.2)

and denoting µγ, mβ and µα as A, B and C, respectively, Eq. (5.1) may be expressed as

θ =
1

2
KBZωRe

(
εαβγ〈〈µγ;mβ, µα〉〉0,ω

)
=

1

2
KBZωRe

(
εcba〈〈A;B,C〉〉0,ω

)
, (5.3)

where K = 1
6
µ0clN and the indices of the Levi-Civita tensor have been changed accordingly

(εαβγ → εcba). Note that ω = −ωa = ωc, where ωa and ωc denote frequencies associated with
operator A and C, respectively.

The form of the damped quadratic response function 〈〈A;B,C〉〉ωb,ωc is described in
Section 4.6. The form of the damped response functions depends on the chosen elimination
rule [45], as discussed in Section 4.8. It was concluded in Paper C7 that the n+1 rule should
be used in the damped response theory for higher-order functions. Therefore, in the following
derivations, the form of the damped quadratic response function in Eq. (4.32) will be used,
where response vectors x̄b and x̄c are expressed in Eq. (4.15), while x̄a is given in Eq. (4.38).
This is equivalent to the form of the damped quadratic response function obtained using the
n+1 rule, given in Eq. (4.35).

The only components of the full damped quadratic response function in Eq. (4.32) that
give a significant contributions in the absorptive frequency region (ωc close to an excitation
energy ωj) are the terms that would be singular in standard response theory. Remaining
terms are therefore omitted for analysis purposes. A simplified damped response function
may thus be written as

〈〈A;B,C〉〉0,ωc ≈
∑
p 6=0

∑
q 6=0

B0pÃpqCq0

(ωp + iγ)(ωq − ωc − iγ)

+
∑
p 6=0

∑
q 6=0

A0pB̃pqCq0

(ωp + ωa − iγ)(ωq − ωc − iγ)

+
∑
p 6=0

∑
q 6=0

A0pC̃pqBq0

(ωp + ωa − iγ)(ωq − iγ)
, (ωc ≈ ωj) . (5.4)

Note that the summations run over only positive indices, which refer to excited states.
Assuming that s denotes a component of the possibly degenerate state j and (ωc ≈ ωj), only
q = js contributes significantly in the first term of Eq. (5.4), p = js in the third term, and

7After Paper A had been published.
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in the second term, both q = js and p = js give significant contributions. Eq. (5.4) may
therefore be written as

〈〈A;B,C〉〉0,ωc ≈
∑
p 6=0

∑
s

B0pÃpjsCjs0

(ωp + iγ)(ωj − ωc − iγ)

+
∑
p 6=0

∑
s

A0pB̃pjsCjs0

(ωp + ωa − iγ)(ωj − ωc − iγ)

+
∑
q 6=0

∑
s

A0jsB̃jsqCq0

(ωj + ωa − iγ)(ωq − ωc − iγ)

+
∑
q 6=0

∑
s

A0jsC̃jsqBq0

(ωj + ωa − iγ)(ωq − iγ)
, (ωc ≈ ωj) . (5.5)

Introducing the dispersionDj(ω) and absorptionAj(ω) line-shape functions given in Eqs. (4.17a)
and (4.17b), respectively, and due to the fact that in the resonance regionDj(ωc) = Dj(−ωa) ≈
0, Eq. (5.5) may be approximated as

〈〈A;B,C〉〉0,ωc ≈
∑
p 6=0

∑
s

(
B0pÃpjsCjs0

)(
Dp(0)− iAp(0)

)
iAj(ωc) (5.6)

+
∑
p 6=0

∑
s

(
A0pB̃pjsCjs0

)(
Dp(−ωa) + iAp(−ωa)

)
iAj(ωc)

+
∑
q 6=0

∑
s

(
A0jsB̃jsqCq0

)
(−ωa)

(
Dq(ωc) + iAq(ωc)

)
iAj

+
∑
q 6=0

∑
s

(
A0jsC̃jsqBq0

)
(−ωa)

(
Dq(0) + iAq(0)

)
iAj, (ωc ≈ ωj) .

The MCD spectrum is described by the real component of the damped response function [as
can be seen from Eq. (5.3)], and therefore only the real part of Eq. (5.6) is considered. Using
the fact that A and C are real, whereas B is a purely imaginary operator, and combining
terms of the real component in Eq. (5.6) by applying the Levi-Civita tensor, yields

Re
(
εcba〈〈A;B,C〉〉0,ωc

)
≈ −2

∑
p 6=0

∑
s

εcbaIm
(
B0pÃpjsCjs0

)
Dp(0)Aj(ωc) (5.7)

−2
∑
p 6=0

∑
s

εcbaIm
(
B̃pjsCjs0A0p

)
Dp(ωc)Aj(ωc), (ωc ≈ ωj) ,
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since ωa = −ωc. Writing out the explicit term for p = jt in the second summation gives

Re(εcba〈〈A;B,C〉〉0,ωc) ≈ −2
∑
p 6=0

∑
s

εcbaIm
(
B0pÃpjsCjs0

)
Dp(0)Aj(ωc) (5.8)

−2
∑

p 6=0,p 6=j

∑
s

εcbaIm
(
B̃pjsCjs0A0p

)
Dp(ωc)Aj(ωc)

−2
∑
s,t

εcbaIm
(
B̃jtjsCjs0A0jt

)
Dj(ωc)Aj(ωc), (ωc ≈ ωj) .

Note that for a non-degenerate (real) exited state j, the last term vanishes due to an anti-
symmetric character of B̃jtjs .

Assuming that the excited states are well-separated, the approximation

Dp(ωc) ≈
1

ωp − ωc
; ωc ≈ ωj, p 6= j , (5.9)

may be used to write Eq. (5.8) as

Re(εcba〈〈A;B,C〉〉0,ωc) ≈ −2
∑
s

(∑
p 6=0

Im(B0pApjsCjs0)

ωp
+ 2

∑
p 6={j}

Im(BpjsCjs0A0p)

ωp − ωc

)
Aj(ωc)

−2
∑
st

Im
(
BjtjsCjs0A0jt

)
Dj(ωc)Aj(ωc) , (ωc ≈ ωj) , (5.10)

where {j} denotes a set of (possibly degenerate) excited states with energy ωj. In Eq. (5.10),
the condition p 6= 0 has been removed from the summation in the third term by expanding
Ãpjs according to Eq. (4.33). B̃pq equals Bpq, due to the fact that a real ground non-
degenerate state |0〉 is considered.

The Faraday A and B terms may be introduced (in accordance with Ref. [32]) as8

A(0→ j) =
1

2

∑
st

εcbaIm
(
BjtjsCjs0A0jt

)
=

1

2
εcba

∑
s

B j̄sj̄sIm
(
A0j̄sC j̄s0

)
, (5.11)

B(0→ j) =
∑
s

εcba

(∑
p 6=0

Im(B0pApjsCjs0)

ωp
+
∑
p 6={j}

Im(BpjsCjs0A0p)

ωp − ω

)
. (5.12)

For the A term, the real degenerate states js have been expanded in complex states j̄s, that
diagonalize the imaginary B operator.

Using Eqs. (5.11) and (5.12), Eq. (5.10) may be written as

εcbaRe(〈〈A;B,C〉〉0,ωc = −2Aj(ωc)B(0→ j)− 4Aj(ωc)Dj(ωc)A(0→ j) (ωc ≈ ωj) .

(5.13)

8Where the notation A = µγ , B = mβ and C = µα has been used.
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Using that ωc = ω and inserting Eq. (5.13) into Eq. (5.3), the following expression for the
ellipticity is obtained

θ = − 1

12
ωµ0clNBZ

(
2Aj(ω)B(0→ j) + 4Aj(ω)Dj(ω)A(0→ j)

)
(ω ≈ ωj) . (5.14)

Noting that
∂Aj(ω)

∂ω
= 2Dj(ω)Aj(ω) , (5.15)

it may be seen that the Faraday B terms are associated with an absorption line-shape
function, whereas theA terms are associated with a derivative line-shape function. Eq. (5.14)
may be written as

θ = −1
6
ωµ0clNBz

(
Aj(ω)B(0→ j) +

∂Aj(ω)

∂ω
A(0→ j)

)
(ω ≈ ωj) . (5.16)

Eq. (5.3) gives therefore an MCD spectrum with contributions from both the Faraday A
and B terms. The A and B contributions cannot be separated, however the spectral profile
can be used to extract information about the individual A and B terms, according to the
method-of-moments [131,137]9

A(0→ j) =
1

33.53

∫
j

(ν̃ − ν̃j)
[θ]M
ν̃

dν̃ , (5.17)

B(0→ j) = − 1

33.53

∫
j

[θ]M
ν̃

dν̃ , (5.18)

where ν̃ is a wavenumber. The molecular ellipticity [θ]M is related to ellipticity θ in Eq. (5.1)
by

[θ]M =
Mθ

cl
, (5.19)

where M is the molecular mass, c the concentration (in g/100 cm3) and l the path length
(dm).

The individual A and B terms can be calculated directly using standard response theory
from the double and single residue of the standard quadratic response function, respectively

A(0→ j) = −1

2
εcbaIm

{
lim

ωa→−ωj
(ωa + ωj)

(
lim
ωc→ωj

(ωc − ωj)〈〈A;B,C〉〉ωb,ωc
)}

, (5.20)

B(0→ j) = −εcbaIm
{

lim
ωc→ωj

(ωc − ωj)〈〈A;B,C〉〉0,ωc
}
. (5.21)

It should be noted that the expression in Eq. (5.21) is only valid for a non-degenerate excited
state j, see Paper C for details.

9The method-of-moments expressions rely on different line-shape functions than Eqs. (4.17a) and (4.17b),
but the general principle is applicable.
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5.1.2 Numerical instabilities for non-degenerate states

Qualitatively correct spectra in the entire frequency range may be obtained using damped
response theory, due to the fact the line-shape functions are build into the theory. In standard
response theory MCD spectra are obtained from the residues of the quadratic response
functions, and singularities may occur for near-degenerate states (see Paper C for details).

In Fig. 5.1, an MCD spectrum is displayed for a model H3 molecule, in a D3h and C2v

molecular configurations. Calculations have been performed at the HF level of theory using
the minimal Hückel basis, with only one 1s orbital on each Hydrogen atom. This basis have
been chosen, due to the fact that the MCD spectrum for this system consists of only the
A term10 in configuration D3h, whereas in configuration C2v, it contains a positive and a
negative B term, see Figs. 5.1a and 5.1b, respectively. The molecular ellipticity [θ]M (given
in units: deg · dl−1·dm−1·mol−1·G−1) is plotted against wavenumber ν.

The A term arises in the MCD spectrum, only if either the ground or the excited state

10Usually an A term occur in the MCD spectrum in combination with a B term.
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Figure 5.1: The MCD spectra for an H3 model molecule in (a) a D3h configuration, (b) a
C2v configuration with a ĤHH angle of 61.5◦, HF/Hückel basis, γ = 0.005 a.u..
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Figure 5.2: The MCD spectra for cyclopropane obtained using the damped (red) and stan-
dard (green) response theories. Standard spectra have been simulated by calculation of
individual A and B terms. (a) a D3h configuration, (b)–(e) C2v configurations with a ĈCC
angle of 60.05◦, 60.10◦, 60.20◦ and 60.25◦, respectively; B3LYP/cc-pVDZ, γ = 0.005 a.u..
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is degenerate. Therefore, as the structure of the system in configuration C2v approaches the
geometry with symmetry D3h, the two B terms for non-degenerate states (Fig. 5.1b) become
an A term for the degenerate state (Fig. 5.1a). It can be seen from Fig. 5.1 that the A term
is associated with the derivative line-shape function, whereas the B term contributes to the
spectrum with an absorption line-shape function band, as discussed in Section 5.1.1.

In Fig. 5.2, a more chemically relevant example is given. An MCD spectrum for cy-
clopropane is displayed, determined using standard and damped response theories at the
B3LYP/aug-cc-pVDZ [138,139] level of theory. In Fig. 5.2a, the cyclopropane molecule with
molecular symmetry D3h, presented in Fig. 5.3b, is considered. This system has a doubly-
degenerate state g with two components gf and gj. Changing one of the ĈCC angles of
cyclopropane, lowers the molecular symmetry to C2v (Fig. 5.3a), and the degenerate g state
splits into two non-degenerate states f and j. The MCD spectrum of the cyclopropane in
molecular symmetry C2v is depicted in Figs. 5.2b–5.2e.

As mentioned above, the A term arises only in case of degenerate ground or excited state.
Therefore, similarly as for H3, when the structure of the system in Fig. 5.3a approaches the
geometry in Fig. 5.3b, the two B terms for f and j states, transform into a B term and an

E
j

f {
g

gj gf

C2v D3h

θfj = −Kω

{
Aj(ω)B(0→ j)

+Af (ω)B(0→ f)
}

θgf gj = −Kω

{
Ag(ω)B(0→ g)

+
∂Ag(ω)

∂ω
A(0→ g)

}

(a) (b)

Figure 5.3: Cyclopropane in (a) a C2v and (b) a D3h configuration. The C2v configuration is
obtained by increasing one of the ĈCC angles. Contributions to the ellipticity in particular
configurations are given below the figures.
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A term for the degenerate g state. The A term enters when state f approaches state j, due
to the fact that a factor in the line-shape function cancels a term in the original B terms
for the states f and j, as derived in detail in Paper C. In Figs. 5.2b and 5.2c, the numerical
instabilities for the non-degenerate states, due to the incorrect treating of this cancellation,
are displayed. As can be seen in Fig. 5.2, numerical instabilities are observed when line-shape
functions are superimposed onto the B terms calculated using standard response theory
to simulate an experimental spectrum (red curve). In contrast, in the damped response
theory formulation for MCD, the line-shape functions are built into the theory and no such
instabilities occur, as can be seen from Figs. 5.2b and 5.2c (green curve).

From Figure 5.2, it may be concluded that the individual A and B terms, obtained using
the standard response theory for molecules with near-degenerate states, may not be reliable
due to numerical instabilities. However, no such problems occur when the damped response
theory is used. Therefore, it is advantageous to verify the results obtained with standard
response theory for molecules with near-degenerate states, using damped response theory.

5.2 Damped Two-Photon Absorption

Another example of a higher-order property is the Two-Photon Absorption (TPA). TPA
describes a simultaneous absorption of two photons of frequencies ωa and ωb in order to
excite a molecule from one state (usually the ground state |0〉) to a higher energy state |n〉.
The energy difference between the lower and upper states of the molecule is equal to the
sum of the energies of the two photons (ωn = ωa + ωb).

The (a, b)th component of the two-photon transition amplitude tensor T ab0n(ωa, ωb) may
be written as [140,141]

T ab0n(ωa, ωb) =
∑
p>0

(
A0pB̃pn

ωp − ωa
+
B0pÃpn

ωp − ωb

)
, (5.22)

where the notation introduced in Section 3.1.3 and in Eq. (4.34) has been used. The summa-
tion runs over all excited states and A and B are components of the electric dipole operator.

Assuming that the two photons have the same energy, (i.e. ωa = ωb = ω), T ab0n(ω, ω)

becomes a symmetric tensor. Together with the assumption that all excited states are real,
the symmetry relations hold

T ab0n(ω, ω) = T ab0n(ω, ω)∗ = T ba0n(ω, ω) = T ba0n(ω, ω)∗ . (5.23)

The isotropically averaged expression for the TPA strength 〈δ〉 in a sample of randomly
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tumbling molecules is given by [141]

〈δ(ω)〉 = 〈T ab0n(ω, ω)T cd0n(ω, ω)〉av

=
1

30

∑
a,b

{
FT aa0n (ω, ω)T bb0n(ω, ω) + (G+H)T ab0n(ω, ω)T ab0n(ω, ω)

}
, (5.24)

where the sums run over the x, y, z components of the molecular axes, and the numbers
F , G, and H depend on the polarization of the incident photons, e.g. if both photons are
linearly polarized with parallel propagation, F = G = H = 2 [141].

In standard response theory, the TPA amplitude may formally be determined from a
residue analysis of the quadratic response function [16]. However, the physical observable,
i.e. the TPA strength tensor T ab0n(ω, ω)T cd0n(ω, ω) in Eq. (5.24) is determined from a residue
of the cubic response function at ωcd = ωn

T ab0n(−ωa,−ωb)T cd0n(ωc, ωd) = lim
ωcd→ωn

(ωcd − ωn)〈〈µa;µb, µc, µd〉〉ωb,ωc,ωd . (5.25)

When identifying the residue of the cubic response function at ωcd = ωn only terms containing
xcdn will contribute

lim
ωcd→ωn

(ωcd − ωn)〈〈µa;µb, µc, µd〉〉ωb,ωc,ωd = lim
ωcd→ωn

(ωcd − ωn)〈〈µa;µb, µc, µd〉〉ωb,ωc,ωd(xcd) ,
(5.26)

and therefore it is sufficient to consider 〈〈µa;µb, µc, µd〉〉ωb,ωc,ωd(xcd) expressed as

〈〈µa;µb, µc, µd〉〉ωb,ωc,ωd(xcd) = −
∑
q>0

{
T ab0q (−ωa,−ωb)T cd0q (ωc, ωd)

ωq − ωcd

+
T ab0q (ωa, ωb)T

cd
0q (−ωc,−ωd)

ωq + ωcd

}
, (5.27)

as a modified standard TPA response function.

When the optical frequency equals a lower lying excitation energy (ω = ωm = ωn/2), the
standard expression for T ab0n(ω, ω) diverges. This problem does not occur when the damped
cubic response theory is used to describe TPA [33], as will be discussed in the following
sections.

5.2.1 Two-photon absorption in damped response theory

Damped response theory may be applied to the modified standard TPA response function
in Eq. (5.27), since only terms containing xcdn contribute to the residue of the cubic response
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function at ωcd = ωn. The damped TPA response function 〈〈A;B,C,D〉〉ωb,ωc,ωd(x̄cd) may
therefore be written as (see Papers A and D for details)

〈〈A;B,C,D〉〉ωb,ωc,ωd(x̄cd) = −
∑
q>0

{
T ab0q (−ωa − iγ,−ωb − iγ)T cd0q (ωc + iγ, ωd + iγ)

ωq − ωcd − iγ

+
T ab0q (ωa + iγ, ωb + iγ)T cd0q (−ωc − iγ,−ωd − iγ)

ωq + ωcd + iγ

}
= −

∑
q>0

{
T ab0q (ω − iγ, ω − iγ)T cd0q (ω + iγ, ω + iγ)

ωq − 2ω − iγ (5.28)

+
T ab0q (−ω + iγ,−ω + iγ)T cd0q (−ω − iγ,−ω − iγ)

ωq + 2ω + iγ

}
,

where the following frequency relations have been used to obtain the last equality

ωa = ωb = −ω; ωc = ωd = ω; ωcd = ωc + ωd = 2ω . (5.29)

The (a, b)th component of the two-photon transition amplitude tensor for a complex fre-
quency in Eq. (5.28) is given as

T ab0n(−ωa − iγ,−ωb − iγ) =
∑
p>0

(
A0pB̃pn

ωp + ωa + iγ
+

B0pÃpn

ωp + ωb + iγ

)
. (5.30)

The norm of the denominator in the first term of Eq. (5.28) is smaller than in the second
term, since ω > 0. Furthermore, the norm of the damped TPA amplitudes is much larger in
the first term than in the second

|T ab0q (ω − iγ, ω − iγ)| � |T ab0q (−ω + iγ,−ω + iγ)| , (5.31a)

|T cd0q (ω + iγ, ω + iγ)| � |T cd0q (−ω − iγ,−ω − iγ)| , (5.31b)

as follows from Eq. (5.22). The first term in Eq. (5.28) is therefore significantly larger than
the second term, and for analysis purposes only the first term will be considered

〈〈A;B,C,D〉〉ωb,ωc,ωd(x̄cd) ≈ −
∑
q>0

T ab0q (ω − iγ, ω − iγ)T cd0q (ω + iγ, ω + iγ)

ωq − 2ω − iγ . (5.32)

The isotropic average of the imaginary components of the numerator in Eq. (5.32) van-
ishes, as discussed in Paper D, and only the real parts of the damped TPA strength compo-
nents contribute to the physical observable TPA. The (a, b, c, d)th component of the damped
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TPA strength tensor component in Eq. (5.32) may thus be written as

T ab0q (ω − iγ, ω − iγ)T cd0q (ω + iγ, ω + iγ) =

= Pab

[∑
p>0

A0pB̃pq

ωp − ω + iγ

]
Pcd

[∑
r>0

C0rD̃rq

ωr − ω − iγ

]
= PabPcd

∑
p>0,r>0

{
A0pB̃pqC0rD̃rq

[
Dp(ω)Dr(ω) +Ap(ω)Ar(ω)

]}
= Φabcd

q (ω) + Λabcd
q (ω) , (5.33)

where the Pab operator creates a sum of the two possible permutations for the A and B

operators, and the dispersion D(ω) and absorption A(ω) functions are given in Eqs. (4.17a)
and (4.17b), respectively. In Eq. (5.33), the damped TPA strength functions Φabcd

q (ω) and
Λabcd
q (ω) have been introduced as

Φabcd
q (ω) = PabPcd

∑
p>0,r>0

A0pB̃pqC0rD̃rqDp(ω)Dr(ω) , (5.34a)

Λabcd
q (ω) = PabPcd

∑
p>0,r>0

A0pB̃pqC0rD̃rqAp(ω)Ar(ω) . (5.34b)

Note that both Φabcd
q (ω) and Λabcd

q (ω) are purely real.
Inserting Eq. (5.33) into Eq. (5.32) gives

〈〈A;B,C,D〉〉ωb,ωc,ωd(x̄cd) ≈ −
∑
q>0

Φabcd
q (ω)+Λabcd

q (ω)

ωq − 2ω − iγ

= −
∑
q>0

[
Φabcd
q (ω) + Λabcd

q (ω)
][
Dq(2ω) + iAq(2ω)

]
. (5.35)

The imaginary part of Eq. (5.35) represents a spectrum of the (a, b, c, d)th component of
the damped TPA tensor [Φabcd

q (ω)+Λabcd
q (ω)]. It is thus convenient to introduce a function

W abcd(ω), which is the negative imaginary component of Eq. (5.35)

W abcd(ω) = −Im
[
〈〈A;B,C,D〉〉ωb,ωc,ωd(x̄cd)

]
≈ W abcd

Φ (ω) +W abcd
Λ (ω) , (5.36)

where

W abcd
Φ (ω) =

∑
q>0

Φabcd
q (ω)Aq(2ω) , (5.37a)

W abcd
Λ (ω) =

∑
q>0

Λabcd
q (ω)Aq(2ω) . (5.37b)

W abcd(ω) generally differs from a standard TPA stick spectrum with superimposed Loren-
tzian line-shape functions (for details, see Paper D). If ω is in a far-off-resonance region,
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the standard TPA spectrum with superimposed line-shape functions and the damped TPA
spectrum are similar, as will be discussed in Section 5.2.2. However, if ω is close to resonance
the spectrum determined using the standard response theory diverges, whereas the damped
TPA spectrum is still well-defined, as demonstrated in Section 5.2.3. In Section 5.2.4, the
relative magnitudes of the damped TPA strengths for these two cases will be compared.

5.2.2 The single-resonance case

In general, the broadening factor γ is much smaller than the optical frequencies. Therefore,
if the optical frequency in Eqs. (4.17a) and (4.17b) is far from ωk, the γ2 factor in the
denominator of Dk(ω) may be omitted, and Ak(ω) is close to zero. Λabcd

q (ω) in Eq. (5.34b)
is therefore close to zero

Λabcd
q (ω) ≈ 0 , (ω far-off-resonance) , (5.38)

whereas Φabcd
q (ω) approximately equals the standard TPA strength in Eq. (5.22) evaluated

at the optical frequency ω

Φabcd
q (ω) ≈ T ab0q (ω, ω)T cd0q (ω, ω) , (ω far-off-resonance) . (5.39)

Inserting Eq. (5.39) into Eq. (5.37a) gives

W abcd(ω) ≈ W abcd
Φ (ω) ≈

∑
q>0

T ab0q (ω, ω)T cd0q (ω, ω)Aq(2ω) , (ω far-off-resonance) . (5.40)

Thus, when ω is far-off-resonance, W abcd(ω) represents a γ-broadened standard TPA spec-
trum, where the standard TPA strength T ab0q (ω, ω)T cd0q (ω, ω) for the |0〉→|q〉 transition is
weighted by the absorption line-shape function Aq(2ω) centered at ωq.

5.2.3 The double-resonance case

In the double-resonance case, both ω and 2ω are close to resonance (ω ≈ ωm and 2ω ≈ ωn,
see Fig. 5.4). In this case the standard expression for the TPA amplitude in Eq. (5.22)
becomes artificially large, and it diverges in the limit where ω = ωm = ωn/2, whereas when
damped response theory is used, no such problems occur.

When ω is close to ωm, the mth term will dominate in the sum-over-states expression
for the TPA amplitude in Eq. (5.22), and the expression for the standard TPA strength
approximately becomes

T ab0n(ωn/2, ωn/2)T cd0n(ωn/2, ωn/2) ≈

≈ PabPcd
(
A0mBmnC0mDmn

) 1

(ωm − ωn/2)2
, (ω ≈ ωm ≈ ωn/2) , (5.41)
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Figure 5.4: Illustration of the TPA
|0〉 → |n〉 transition in the case of
exact double-resonance ω = ωm =
ωn/2. To the left of the figures:
(a) Dm(ω)2An(2ω), which determines
the overall structure of W abcd

Φ (ω); (b)
Am(ω)2An(2ω), which determines the
overall structure of W abcd

Λ (ω).

which diverges when ωm = ωn/2. Using Eq. (5.41), the standard stick spectrum with a
superimposed line-shape function is given by

TPA|0〉→|n〉(standard) ≈

≈ PabPcd
(
A0mBmnC0mDmn

) 1

(ωm − ωn/2)2
An(2ω), (ω ≈ ωm ≈ ωn/2). (5.42)

In analogy with the standard case, at ω ≈ ωm the mth term will dominate the overall
shapes of Φabcd

n (ω) and Λabcd
n (ω) in Eqs. (5.34a) and (5.34b)

Φabcd
n (ω) ≈ PabPcd

(
A0mBmnC0mDmn

)
Dm(ω)2 , (ω ≈ ωm ≈ ωn/2) , (5.43a)

Λabcd
n (ω) ≈ PabPcd

(
A0mBmnC0mDmn

)
Am(ω)2 , (ω ≈ ωm ≈ ωn/2) . (5.43b)

In the double-resonance case the damped TPA expressions may be approximated by the nth
term in the sum-over-states expression in Eq. (5.37)

W abcd
Φ (ω) ≈ PabPcd

(
A0mBmnC0mDmn

)
Dm(ω)2An(2ω), (ω ≈ ωm ≈ ωn/2) , (5.44a)

W abcd
Λ (ω) ≈ PabPcd

(
A0mBmnC0mDmn

)
Am(ω)2An(2ω), (ω ≈ ωm ≈ ωn/2) .(5.44b)

In Fig. 5.4, the TPA transition |0〉 → |n〉 transition is illustrated, in the case of exact
double-resonance. In Fig. 5.4a, Dm(ω)2An(2ω) is plotted which determines the overall struc-
ture of W abcd

Φ (ω) function. The overall structure of W abcd
Λ (ω) is govern by Am(ω)2An(2ω)

which is displayed in Fig. 5.4b. From the shape of Dm(ω) [in Eq. (4.17a)], it may be seen that
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Figure 5.5: TPA spectra for LiH (aligned along the x-axis) at the CAM-B3LYP/cc-pVDZ
level of theory using the experimental equilibrium geometry 1.5957 Å. The broadening pa-
rameter γ = 0.005 a.u. (a) Damped TPA spectrum. (b) Standard TPA spectrum with
superimposed line-shape functions, where the positions of ω4/2 and ω7/2 are indicated by
vertical bars.

W abcd
Φ (ω) approaches zero when ω → ωm, whereas W abcd

Λ (ω) has the shape of an absorption
line-shape function with a maximum at ω = ωm. In the double-resonance case, W abcd

Λ (ω)

therefore dominates the overall structure ofW abcd(ω) in contrast to the single-resonance case
in Eq. (5.40), where W abcd

Φ (ω) is the dominant contribution.

5.2.4 Comparing the single-resonance and approximate double-resonance cases

In this section, the single-resonance case will be compared to the approximate double-
resonance case (ωm is close to ωn/2). In the approximate double-resonance case, the mth
term in the standard TPA amplitude in Eq. (5.22) becomes artificially large, and the per-
turbation analysis [leading to Eq. (5.22)] is not strictly valid.

In Fig. 5.5, the TPA spectrum for LiH is shown, using (a) damped response theory and
(b) standard response theory (stick spectrum with superimposed absorption line-shape func-
tions), at the CAM-B3LYP/cc-pVDZ [142] level of theory. For this molecule, the fourth
(ω4 = 0.242 a.u.) and the seventh (ω7 = 0.264 a.u.) excited states have the largest TPA
strengths, and half their excitation energies approximately equal the first excitation energy
(ω1 = 0.129 a.u.). Transitions |0〉 → |n〉 (n = 4, 7) can therefore be considered as approxi-
mate double-resonance transitions.

As can be seen in Fig. (5.5), the spectrum of LiH is completely dominated by the presence
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of two large peaks, corresponding to the |0〉 → |4〉 and |0〉 → |7〉 transitions, respectively.
The appearances of the same transitions are quite different in Figs. 5.5a and 5.5b. This is
due to the fact that the damped and standard TPA expressions differ significantly in the
approximate double-resonance case (see Paper D for details). Note in particular that the
positions of the two peak maxima in the damped spectrum in Fig. 5.5a are closer than in
the stick spectrum, and that the TPA values in the standard spectrum are nearly an order
of magnitude larger than those in the damped spectrum in this case.

In standard (Fig. 5.5b) as well as damped (Fig. 5.5a) response theory, the approximate
double-resonance TPA strengths are much larger than the single-resonance TPA strengths,
as may be seen by considering the single resonance at frequency ω ≈ 0.065 a.u..

5.3 Summary of the damped MCD and TPA analysis

Damped response theory yields qualitatively correct MCD and TPA spectra at all optical
frequencies, in contrast to standard response theory, where divergence or numerical insta-
bilities may occur. However, the actual values and peak broadenings in a damped spectrum
depend entirely on the empirical broadening parameter γ, and therefore the spectra obtained
using damped response theory can be expected to be only qualitatively correct.

For large molecules, the density of the excited states is generally very large, but only
a very limited number of the excited states are associated with large absorption strengths.
Using standard response theory techniques [16], each excited state must be addressed in-
dividually, regardless of its associated absorption strength, making the determination of
absorption spectra highly intractable for large molecules. In damped response theory, the
focus on the excitations with significant absorption strengths is built into the theory, mak-
ing damped response theory a very powerful tool for calculating absorption spectra for large
molecules [33].
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6 Standard iterative algorithms

The solution of linear equations is a central task in obtaining molecular properties. In
the early days of quantum chemistry, only small molecular systems were treated and linear
equations were solved explicitly by applying standard algorithms of numerical analysis, e.g.
diagonalization and triangularization methods [25–27]. For larger molecular systems, solving
equations explicitly became impossible and iterative subspace algorithms were introduced
in quantum chemistry. For example, Pople et al. [37] solved the coupled HF equations and
Purvis and Bartlett [143] the CCSD amplitude equations using iterative subspace algorithms.
When equations are solved using the subspace algorithms, vectors from all iterations must
be stored on disk, which becomes impractical for large molecular systems.

The solution of linear equations with a symmetric and positive definite matrix may be
formulated as the minimization of a quadratic function. The standard method for this min-
imization is the conjugate gradient (CG) algorithm [39, 144–146], where in each iteration a
new direction, conjugate to all previous directions, is added. The CG algorithm is designed
such that the solution vector obtained from the last three trial vectors is identical to the
one determined from a subspace algorithm containing all n vectors. In the conventional
formulation of the CG algorithm, each iteration can be expressed in terms of a unidirec-
tional search, where the search direction may be determined from information from the last
iteration. The handling and storage of trial vectors therefore becomes simplified compared
to an iterative subspace formulation. In Ref. [38], Wormer et al. recognized that both the
subspace iterative algorithms used in Refs. [37] and [143] and the CG algorithm lead to an
identical iteration sequence. However, the CG algorithm may only be used for solving linear
equations with a positive definite matrix. The conjugate residual (CR) algorithm [40] may
be applied to a set of linear equations with a non-positive definite matrix and shares the
very attractive feature with the CG algorithm that each iteration can be expressed in terms
of a unidirectional search where the search direction may be determined from information
from the last iteration. Also, when the CR algorithm is used, the storage and manipulation
of a large number of directions may be avoided.

In this chapter, selected iterative algorithms for solving a set of linear equations of the
form

Ax = b , (6.1)

will be described, whereA is a non-singular matrix of dimension d. The residual r of Eq. (6.1)
for a general vector x is given as

r = b−Ax . (6.2)
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A general iterative subspace algorithm will be described in Section 6.1, while the CG and
CR algorithms are described in Sections 6.2 and 6.3, respectively.

6.1 Iterative subspace algorithm

An iterative subspace algorithm is a standard approach for solving a set of linear equations
of the form in Eq. (6.1). This approach is very general and can be used in cases where A is
complex, non-Hermitian and/or non-positive definite. A flowchart of the subspace iterative
algorithm for solving linear equations is given in Fig. 6.1.

After iteration n of a subspace iterative algorithm, n trial vectors

xn = {x1,x2, ...,xn} , (6.3)

have been obtained. A subspace of n linearly transformed vectors

(Ax)n = {Ax1,Ax2, ...,Axn} , (6.4)

is also known. Eq. (6.1) is solved in a reduced subspace of xn, giving a reduced subspace
equation of the form

x†1Ax1 x†1Ax2 . . . . . . x†1Axn−1 x†1Axn

x†2Ax1 x†2Ax2 . . . . . . x†2Axn−1 x†2Axn

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

x†n−1Ax1 x†n−1Ax2 . . . . . . x†n−1Axn−1 x†n−1Axn

x†nAx2 x†nAx2 . . . . . . x†nAxn−1 x†nAxn





α
(n)
1

α
(n)
2
...
...

α
(n)
n−1

α
(n)
n


=



x†1b

x†2b
...
...

x†n−1b

x†nb


,

(6.5)
which determines the optimal solution vector x̃n+1 in the subspace xn

x̃n+1 =
n∑
i=1

α
(n)
i xi . (6.6)

The residual vector rn+1 in Eq. (6.2) for an optimal vector in Eq. (6.6) is given as

rn+1 = b−Ax̃n+1 = b−
n∑
i=1

α
(n)
i Axi . (6.7)

The residual vector is calculated to check for convergence of the iterative scheme and to
obtain a new trial vector. The iterative procedure is converged when the residual norm
||rn+1|| is smaller than a preset threshold. The new trial vector xn+1, equal to the residual
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Vector subspace

Linear transformation
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Optimal vector

converged?

Solution

Residual

NO
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Axn
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n∑

i=1

α(n)
i xi

rn+1 = b−Ax̃n+1

Aredαred = bred xn+1 = C−1rn+1

New vector

Figure 6.1: Flowchart of the subspace iterative algorithm for solving linear equations.
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rn+1, is added to the subspace in Eq. (6.3) and the iteration procedure is continued until
convergence is obtained.

The convergence of the algorithm depends on the condition number of A. The condition
number may be decreased, and therefore the convergence of the algorithm may be improved,
by introducing preconditioning [147] in Eq. (6.1). The new trial vector is then obtained from
the preconditioned residual as

xn+1 = C−1rn+1 , (6.8)

where preconditioner C is an easily invertible approximation to A in Eq. (6.1).

The iterative subspace algorithm is commonly used in quantum chemistry for solving
sets of linear equations. It has the advantage that it may be applied for all types of linear
equations (with a non-singular matrix A). However, whole sets of vectors xn and (Ax)n

in Eqs. (6.3) and (6.4), respectively, have to be stored on disk. For calculations on large
molecular systems, disk storage requirements may therefore be high.

6.2 The conjugate gradient algorithm

The CG algorithm is an iterative method for solving a set of linear equations of the form in
Eq. (6.1), where A is a real symmetric and positive definite matrix. The solution to Eq. (6.1)
may be obtained by minimization of the quadratic function

f(x) =
1

2
xTAx− xTb , (6.9)

as will be now described.

After n iterations, n optimal solution vectors xn as in Eq. (6.3), n residuals rn

rn = {r1, r2, ..., rn} , (6.10)

and n− 1 directions pn−1

pn−1 = {p1,p2, ...,pn−1} , (6.11)

are known. The residual r is given in Eq. (6.2).

It may be shown that the previous directions and residuals fulfill the relations

rTi pj = 0, rTi rj = 0, i, j = 1, 2, . . . , n, i > j, (6.12a)

rTi Apj = 0, i, j = 1, 2, . . . , n, i > j + 1, (6.12b)

pTi Apj = pTi Apjδij, i, j = 1, 2 . . . , n− 1 . (6.12c)
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The new trial vector may be written as a general vector in the space spanned by the previous
search directions pn−1 in Eq. (6.11) and the current residual rn

xn+1 = xn +
n−1∑
i=1

α
(n)
i pi + α(n)

n rn . (6.13)

Minimizing f(xn+1) in Eq. (6.9) with respect to n free parameters leads to a subspace
equation

pT1 Ap1 pT1 Ap2 . . . . . . pT1 Apn−1 pT1 Arn

pT2 Ap1 pT2 Ap2 . . . . . . pT2 Apn−1 pT2 Arn

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

pTn−1Ap1 pTn−1Ap2 . . . . . . pTn−1Apn−1 pTn−1Arn

rTnAp0 rTnAp1 . . . . . . rTnApn−1 rTnArn





α
(n)
1

α
(n)
2
...
...

α
(n)
n−1

α
(n)
n


=



pT1 rn

pT2 rn
...
...

pTn−1rn

rTnrn


,

(6.14)
that is equivalent to

pT1 Ap1 0 . . . 0 0 0

0 pT2 Ap2 . . . 0 0 0

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

0 0 . . . pTn−2Apn−2 0 0

0 0 . . . 0 pTn−1Apn−1 pTn−1Arn

0 0 . . . 0 rTnApn−1 rTnArn





α
(n)
1

α
(n)
2
...
...

α
(n)
n−2

α
(n)
n−1

α
(n)
n


=



0

0
...
...
0

0

rTnrn


,

(6.15)
where the relations in Eqs. (6.12a)–(6.12c) have been used. It may be seen from Eq. (6.15)
that only three last trial vectors are necessary to obtain the optimal solution vector in
iteration n+ 1.

It can be seen from Eq. (6.16) that solving the reduced space equation in Eq. (6.15)
can be avoided, due to the fact that only last three trial vectors contain all the information
necessary to obtain the optimal solution vector. The solution vector xn+1 is obtained directly
as a product of matrix-matrix addition and multiplication. Furthermore, the optimal solution
vector xn+1 may be expressed in terms of a single search direction pn and of the optimal
step-length α(n)

n as

xn+1 = xn + α(n)
n pn , (6.16)
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where
pn = rn −

pTn−1Arn
pTn−1Apn−1

pn−1 , (6.17)

α(n)
n =

pTnrn
pTnApn

. (6.18)

The residual of xn+1 in then obtained as

rn+1 = rn − α(n)
n Apn . (6.19)

Eqs. (6.12a)–(6.12c) are valid for n increased by one and the iteration procedure of the CG
is established.

The iterations are continued until convergence is obtained. Preconditioning may be
introduced in the CG algorithm to improve convergence, as will be discussed in context of
the CR algorithm in Section 6.3.2.

The advantage of the CG algorithm is that in iteration n only three vectors: xn, rn and
pn−1, have to be stored on disk. However, the CG algorithm (in this formulation) may only
be applied to a set of linear equations with a positive definite matrix A.

6.3 The conjugate residual algorithm

In this section, the CR algorithm is described (discussed in details in Ref. [148]). The CR
algorithm is analogous to the CG algorithm and has similar advantages enabling storage
reduction, but may be applied to linear (and also non-linear) equations with non-positive
matrices A. The CR algorithm shares some equations with the CG algorithm, however they
will be repeated for convenience. The CR algorithm in its standard form is described in
Section 6.3.1 and the preconditioned CR algorithm is discussed in Section 6.3.2.

6.3.1 The Conjugate residual in its standard form

In this section, the CR algorithm in its standard form is discussed. The CR algorithm is an
iterative method for solving a set of linear equations of the form in Eq. (6.1), where A is a
symmetric but not necessarily positive definite matrix. The solution to Eq. (6.1) is obtained
by minimization of the squared residual norm

g(x) = rT r , (6.20)

as
∂g(x)

∂x
= 2A(Ax− b) = 0 . (6.21)
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Figure 6.2: Flowchart of the conjugate residual algorithm.
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After n iterations, n optimal solution vectors xn in Eq. (6.3), n residuals rn in Eq. (6.10)
and n − 1 directions pn−1 in Eq. (6.11) are known. It may be shown that the previous
directions and residuals fulfill the relations

rTi Apj = 0, rTi Arj = 0, i, j = 1, 2, . . . , n, i > j, (6.22a)

rTi A2pj = 0, i, j = 1, 2, . . . , n, i > j + 1, (6.22b)

pTi A2pj = pTi A2pjδij, i, j = 1, 2, . . . , n− 1 , (6.22c)

analogously to Eqs. (6.12a)–(6.12c) in the CG algorithm.
The new trial vector may be written as a general vector in the space spanned by the

previous search directions pn−1 in Eq. (6.11) and the current residual rn

xn+1 = xn +
n−1∑
i=1

α
(n)
i pi + α(n)

n rn , (6.23)

which is identical to Eq. (6.13).
Minimizing g(xn+1) in Eq. (6.20) with respect to n free parameters leads to a subspace

equation

pT0 A2p0 0 . . . 0 0 0

0 pT1 A2p1 . . . 0 0 0

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

0 0 . . . pT1 A2p1 0 0

0 0 . . . 0 pTn−1A
2pn−1 pTn−1A

2rn

0 0 . . . 0 rTnA2pn−1 rTnA2rn


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α
(n)
n−2

α
(n)
n−1

α
(n)
n


=



0

0
...
...
0

0

rTnArn


,

(6.24)
where relations in Eqs. (6.22a)-(6.22c) have been used. From Eq. (6.24) it may be seen that
also in the CR algorithm only last three trial vectors are necessary to obtain the optimal
solution vector in iteration n+ 1.

Analogously to the CG algorithm, in the CR algorithm the optimal solution vector xn+1

may be expressed in terms of a single search direction pn and of the optimal step-length α(n)
n

as
xn+1 = xn + α(n)

n pn , (6.25)

which is identical to Eq. (6.16). Direction pn and step-length α(n)
n are now given as

pn = rn −
pTn−1A

2rn
pTn−1A

2pn−1

pn−1 , (6.26)
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α(n)
n =

pTnArn
pTnA2pn

, (6.27)

respectively. The residual of xn+1 is identical to Eq. (6.19)

rn+1 = rn − α(n)
n Apn . (6.28)

Eqs. (6.22a)–(6.22c) are valid for n increased by one and the iteration procedure of the
CR algorithm is established. The iterations are continued until convergence is obtained. A
flowchart of the conjugate residual algorithm is presented in Fig. 6.2.

In the CR algorithm, all but the last direction may thus be discarded. In iteration
n only four vectors: xn, pn−1, Apn−1 and rn need to be stored in memory. The main
difference between the CG and the CR algorithm is that the step-length in the CG algorithm
is determined from a minimization of f(xn+1) in Eq. (6.9), whereas in the CR algorithm, the
step-length is determined from a minimization of g(xn+1) in Eq. (6.20). The CR algorithm
may therefore be used also when the matrix A in Eq. (6.1) is not positive definite, which
does not hold for the CG algorithm. Furthermore, the CR algorithm may be generalized to
non-linear equations as the residual norm that is minimized in CR may straightforwardly be
obtained also for a set of non-linear equations.

6.3.2 The preconditioned conjugate residual algorithm

To improve the convergence of the CR algorithm, the set of linear equations in Eq. (6.1) may
be solved in a preconditioned form. A coordinate transformation may be introduced that
produces a new set of equations with a matrix that has a lower condition number compared
to A. This may be done by multiplying Eq. (6.1) with the transpose of a non-singular matrix
P , yielding

APY = bP , (6.29)

where
AP = PTAP ; Y = P−1x; bP = PTb . (6.30)

Eq. (6.29) may be solved using the CR algorithm and the solution may then be transformed
to the original coordinates. Alternatively, Eq. (6.29) may be solved in the original basis
using modified CR equations, as will be now described. The residual in the Y basis is given
as

rP = bP −APY = PT r . (6.31)

Optimal directions are obtained by minimizing g(xn+1) in analogy to Eq. (6.20)

gP(x) = (rP)T rP = rTPPT r = rTC−1r , (6.32)
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Figure 6.3: Flowchart of the preconditioned conjugate residual algorithm.
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where
C−1 = PPT . (6.33)

The preconditioned analogue to Eqs. (6.25)–(6.28) may be written as [148]

xn+1 = xn + α(n)
n C−1pn , (6.34)

where
pn = rn −

pTn−1C
−1AC−1AC−1rn

pTn−1C
−1AC−1AC−1pn−1

pn−1 , (6.35)

α(n)
n =

pTnC−1AC−1rn
pTnC−1AC−1AC−1pn

, (6.36)

and
rn+1 = rn − α(n)

n AC−1pn . (6.37)

Choosing PT such that C is a good approximation to A ensures that the linear equations
are solved in a basis where the matrix has a lower condition number. A flowchart of the
preconditioned conjugate residual algorithm is given in Fig. 6.3.

The literature [148] gives the impression that the preconditioned CR algorithm may be
applied whenever C is a good approximation to A. However, note that the step-length in the
preconditioned CR algorithm is determined from a minimization of gP(xn+1) in Eq. (6.32),
not a minimization of g(xn+1) in Eq. (6.20). The minimization of gP(xn+1) is well-defined
only when C−1 may be decomposed as in Eq. (6.33). This requires that C−1 is positive
definite. It thus may be concluded that the preconditioned CR algorithm may be applied
only for a positive definite preconditioner C−1,11 although in several numerical examples,
the performance of the preconditioned CR algorithm for a non-positive definite matrix and
preconditioner, is benign.

11Unfortunately, this observation has been made long after it should had been made and therefore results
obtained using the CR algorithm are reported in this thesis.
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7 Solving response equations using iterative methods

Molecular properties are fundamental quantities underlying the macroscopic behavior of
matter and their determination constitutes one of the most fruitful areas of interplay between
experiment and theory [149]. Frequency-dependent molecular properties, as discussed in
previous chapters, may be determine by solving response equations.

Assuming that the unperturbed wavefunction |0〉 is real, the response equations can be
written in a general form

(E[2] − zS[2])X = gb , (7.1)

where E[2] and S[2] are the generalized Hessian and metric matrices, respectively, given in
Eq. (3.38). z denotes a general frequency parameter, gb is a property gradient and X(z)

is the solution vector also known as the linear response vector. For the real wavefunction,
response matrices E[2] and S[2] are real, while X, gb and z may be complex depending on
which type of response equation is considered.

In this thesis, solving three different types of response equations is discussed:

• The Standard response equation
The standard response equation has the form given in Eq. (3.34)

(E[2] − ωS[2])X = G , (7.2)

where ω is a real frequency parameter and G is a real generalized gradient type vector.
Eq. (7.2) represents a set of linear equations for a symmetric matrix.

• The Damped response equation
The damped response equation has a form

(E[2] − (ω + iγ)S[2])(XR + iXI) = GR + iGI . (7.3)

The frequency parameter z in Eq. (7.1) is complex, where ω is a real frequency and
γ is a damping parameter also known as an inverse effective lifetime parameter or an
excited-state lifetime broadening parameter [28–34], as discussed in Section 4.1. The
gradient and the solution vector are complex. The real and the imaginary component
of the solution vector describes dispersion and absorption processes, respectively. The
damping parameter γ has been introduced in the response equation to correct an
unphysical behavior of molecular properties in resonance regions, when one or more
of the optical frequencies equals an excitation energy. Due to the introduction of a
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complex optical frequency, (E[2] − (ω + iγ)S[2]) becomes non-Hermitian. Eq. (7.3),
however, remains linear.

• The Response eigenvalue equation
Excitation energies occur at the poles of the linear response function. The excitation
energies may be determined by solving the generalized eigenvalue equation where the
right-hand side vector gb in Eq. (7.1) is a zero vector

(E[2] − ωp0S[2])Xp = 0 . (7.4)

ωp0 is the excitation energy from state |0〉 to state |p〉 and Xp is the corresponding
eigensolution. Since S[2] is not a positive definite matrix Eq. (7.4) becomes a non-
Hermitian eigenvalue equation.

In this chapter, applying subspace iterative algorithms presented in Chapter 6 to re-
sponse equations is discussed. In Section 7.1, the general subspace approach is introduced,
and is discussed in context of the eigenvalue, standard and damped response equations in
Sections 7.2, 7.3 and 7.4, respectively. In Chapter 8, an algorithm with paired trial vectors
is described. An algorithm with symmetrized trial vectors is introduced in Chapter 9.

7.1 The general subspace iterative algorithm

In electronic structure theory, response equations [Eq. (7.1)] are solved using subspace it-
erative algorithms based on the one presented in Section 6.1. In the subspace iterative
algorithms, equations are solved in the reduced space build based on the fact that the linear
transformations of the generalized Hessian E[2] and metric S[2] matrices on a trial vector b,
given in Eqs. (3.65) and (3.66), can be carried out

σ = E[2]b , ρ = S[2]b . (7.5)

A flowchart of the general subspace iterative algorithm for solving linear response equations
is presented in Fig. 7.1.

After iteration n of a subspace iterative algorithm, n trial vectors

bn = {b1, b2, ..., bn} , (7.6)

and the linearly transformed vectors

σn = {σ1,σ2, ...,σn} , ρn = {ρ1,ρ2, ...,ρn} , (7.7)
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Vector subspace

σi = E[2]bi; ρi = S[2]bi
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Solving the reduced equations

Optimal vectors

converged?
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Residuals
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bn = {b1, b2, ..., bn}

(E[2]
red − zS[2]

red)(X)red = gb
red

Xn+1 =
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i=1

(Xred)ibi

Rn+1 = (E[2] − zS[2])Xn+1 − gb

New trial vector

bn+1 = (E[2]
0 − zS[2])−1Rn+1

Figure 7.1: Flowchart of the general subspace iterative algorithm for solving linear response
equations.
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have been obtained. Reduced response equations are set up in the subspace bn in analogy
to Eq. (6.5), giving

(E
[2]
red − zS

[2]
red)(X)red = gbred , (7.8)

where

(E
[2]
red)ij = b†iσj , (S

[2]
red)ij = b†iρj , (7.9)

gbred is equal to zero when the eigenvalue equation is solved and for the standard and damped
response equation it has the form

(gbred)i = b†ig
b . (7.10)

Eq. (7.8) determines the optimal solution vector Xn+1 in the subspace bn

Xn+1 =
n∑
i=1

(Xred)ibi , (7.11)

in analogy to Eq. (6.6). The residual vector for the response equations is given as

Rn+1 = (E[2] − zS[2])Xn+1 − gb =
n∑
i=1

(Xred)i(σi − zρi)− gb . (7.12)

The residual vector is calculated to check for convergence of the iterative scheme and to obtain
a new trial vector. The iterative procedure is converged when the residual norm ||Rn+1||
is smaller than a preset threshold. The new trial vector bn+1 is added to the subspace in
Eq. (7.6) and the iteration procedure is continued until convergence is obtained.

The convergence of the algorithm is determined by the condition number of the response
matrix (E[2]−zS[2]), i.e. the ratio between the smallest and largest eigenvalue of the response
matrix (zmax

p0 /zmin
p0 ). The B matrix in Eq. (3.38) represents a matrix element between the

reference state |0〉 and a doubly excited state and is small compared to A in Eq. (3.38),
which is the singly excited configuration interaction (CI) matrix for the HF reference state.
The convergence of the standard response equations is therefore determined by the condition
number of the A matrix.

To improve the convergence of the response equations, preconditioning may be intro-
duced, as mentioned in Section 6.1. The new trial vector is then obtained from the precon-
ditioned residual as

bn+1 = L−1Rn+1 , (7.13)

where preconditioner L is an easily constructed approximation to (E[2] − zS[2]). In the MO
representation, S[2] is diagonal [see Eq. (3.39b)] and E[2] is a diagonally dominant matrix
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[see Eq. (3.53)], and therefore (E
[2]
0 − zS[2])−1 is easy to construct and may be used as a

preconditioner.
For the preconditioned equation, a convergence rate of an algorithm is determined by the

condition number of the matrix

(E
[2]
0 − zS[2])−1(E[2] − zS[2]) = (E

[2]
0 − zS[2])−1[(E

[2]
0 − zS[2]) +E

[2]
1 ]

= 1 + (E
[2]
0 − zS[2])−1E

[2]
1 . (7.14)

The condition number of the preconditioned equation is therefore determined by the eigen-
values of [(E

[2]
0 − zS[2])−1E

[2]
1 ]. For small values of parameter z the condition number is

determined by (E
[2]
0 )−1E

[2]
1 and is significantly reduced compared to the condition number

of the non-preconditioned equation, as the dominant contribution to the large eigenvalues is
removed. However, when the real contribution to z (frequency ω) approaches the orbital en-
ergy difference for the lowest excitation energies, the preconditioner becomes nearly singular
and slower convergence is observed. In principle, the remedy to this problem can be using a
high value of imaginary component of z (damping parameter γ). However, the excited state
lifetime parameter γ must be chosen small to obtain results that have a physical meaning.

In Sections 7.2, 7.3 and 7.4 procedures for solving the eigenvalue response equation,
standard response equation and damped response equation, respectively, are given in details.
Encountered problems are also discussed.

7.2 The response eigenvalue equation

When the eigenvalue equation in Eq. (7.4) is solved, the algorithm that is used determines the
way of obtaining new trial vectors. In this thesis two algorithms for obtaining new trial vec-
tors when using the iterative subspace approach are discussed, the Davidson algorithm [42],
in Section 7.2.1, and the Olsen algorithm [150], in Section 7.2.2. However, both the Davidson
and the Olsen algorithms were designed for solving a Hermitian eigenvalue equation, and
when they are applied for the non-Hermitian eigenvalue problem some difficulties may occur,
as will be discussed in Section 7.2.3.

7.2.1 The Davidson algorithm

Solving the response eigenvalue equation using the Davidson algorithm is similar to solving
the standard response equation as described in Section 7.1. A new trial vector is obtained in
the Davidson algorithm according to Eq. (7.13), where the matrix L is a diagonal approxi-
mation to (E[2] − ωRp0S[2]) as discussed in the previous section.



78

For the linear equations, improved convergence is obtained whenE0 becomes an improved
approximation to E[2] matrix. When E[2]

0 is replaced by E[2] the converged solution is
obtained for a set of linear equations in one iteration. When the eigenvalue equation is
solved using the Davidson algorithm a problem arises in the limit where E[2]

0 is approaching
E[2], as no new direction is generated. This problem is avoided using the Olsen algorithm,
which is described in the next section.

7.2.2 The Olsen algorithm

In the Olsen algorithm, a new trial vector is obtained in a perturbation method scheme. The
Olsen algorithm will be introduced in context of solving the response eigenvalue equation.

It is assumed that an approximate solution X0 to the response eigenvalue equation is
known. This may be the optimal solution vector (Xp)n+1 in Eq. (7.11). The approximate
solution X0 satisfies the normalization condition in Eq. (3.57). In the Olsen algorithm, the
zeroth-order eigenvalue ω0

p0 is obtained from projecting the eigenvalue equation in Eq. (7.4)
with (X0)T

(X0)T (E[2] − ω0
p0S

[2])X0 = 0 , (7.15)

however, ω0
p0 in Eq. (7.15) is identical to z obtained in Eq. (7.8).12

To construct an improved solution vector in the Olsen algorithm, Eq. (7.4) is expressed
in terms of a zeroth-order and correction components

ωp0 = ω0
p0 + ω1

p0 , (7.16)

Xp = X0 +X1 , (7.17)

where ω1
p0 andX1 are correction terms to the eigenvalue ω0

p0 and the eigenvectorX0, respec-
tively. The E[2] matrix is also written in terms of a zeroth-order and a correction component,
as in Eq. (3.53).

Inserting Eqs. (3.53), (7.16) and (7.17) into Eq. (7.4) gives(
(E

[2]
0 +E

[2]
1 )− (ω0

p0 + ω1
p0)S[2]

)
(X0 +X1) = 0 . (7.18)

X1 can be determined from Eq. (7.18) by neglecting the terms that are quadratic in the
corrections

X1 = −
(
E

[2]
0 − ω0

p0S
[2]
)−1 [(

E[2] − ω0
p0S

[2]
)
X0 − ω1

p0S
[2]X0

]
. (7.19)

12Assuming that z is real.
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ω1
p0 may be determined by requiring that the eigenvectors correctionX1 is orthogonal toX0

in the generalized matrix S[2]

(X1)TS[2]X0 = 0 , (7.20)

giving

ω1
p0 =

(X0)TS[2]
(
E

[2]
0 − ω0

p0S
[2]
)−1 (

E[2] − ω0
p0S

[2]
)
X0

(X0)TS[2]
(
E

[2]
0 − ω0

p0S
[2]
)−1

S[2]X0

. (7.21)

The inverse matrix (E
[2]
0 − ω0

pS
[2])−1 is easily constructed as described in Section 7.1. Using

E[2]X0 and S[2]X0 [that have been calculated when the residual vector in Eq. (7.12) has
been constructed] and ω1

p0 from Eq. (7.21), the correction vector X1
p may be obtained from

Eq. (7.19). X1 is added to the trial vector subspaces in Eq. (7.6) and the iteration procedure
is continued until convergence.

Note that neglecting the second term in Eq. (7.19) leads to the Davidson algorithm. The
second term in Eq. (7.19) ensures that a new improved trial vector is obtained also when
E

[2]
0 is approaching E[2]. In fact, when E[2]

0 in the Olsen algorithm is replaced by E[2], the
inverse-iteration method with the Rayleigh quotient [10, 144, 151] is established and cubic
convergence is obtained [10].

7.2.3 Problems when solving the response eigenvalue equation

The response eigenvalue equation of the form in Eq. (7.4) represents a non-Hermitian eigen-
value equation. In addition, in early iterative subspace algorithms the response eigenvalue
equation was expressed as

S[2]E[2]X = ωX , (7.22)

due to the fact that in the canonical MO representation, S[2] is an easily invertible matrix
[(S[2])−1 = S[2]]. However, Eq. (7.22) represents also a non-Hermitian eigenvalue equation.
Both the Davidson and the Olsen algorithms were designed for solving a Hermitian eigenvalue
problem, and therefore it was problematic to solve response eigenvalue equation using an
iterative subspace algorithm.

When a Hermitian eigenvalue equation is solved, the subspace eigenvalue equation always
has real eigenvalues, and monotonic convergence to the lowest eigenvalues is obtained due
to MacDonald’s theorem [152]. When a non-Hermitian eigenvalue equation is solved there is
no guarantee that the eigenvalues will be real, and therefore the eigenvalues of the reduced
generalized eigenvalue equation may be complex. In both the Olsen and Davidson algorithms
it is assumed that ωRp0 is real, therefore some difficulties may occur when the non-Hermitian
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eigenvalue equation is solved and new trial vectors cannot be obtained due to the complex
eigenvalues. This problem was encountered by Bouman et al. [153] when applied the David-
son algorithm on the response eigenvalue equation in Eq. (7.22) [154]. Also, the monotonic
convergence to the lowest eigenvalues is lost when the non-Hermitian eigenvalue is solved.
Neither the Davidson algorithm nor the Olsen algorithm may therefore be used directly for
solving the response eigenvalue equation in Eq. (7.4).

In Chapters 8 and 9, it is discussed how the non-Hermitian eigenvalue equation may
be transformed to a Hermitian eigenvalue equation and solved using a generalization of the
Davidson or Olsen iterative subspace algorithm.

7.3 The standard response equation

The standard response equation in Eq. (7.2) represents a set of linear equations with a sym-
metric matrix. The algorithm commonly used for solving linear equations with a symmetric
matrix is the CG algorithm, described in Section 6.2. By using a CG implementation, the
set of vectors stored on disk may be significantly reduced to only the last three vectors, and
the storing and manipulation of large amount of directions (trial vectors) can be avoided.

The CG algorithm may be applied only to equations with positive definite matrix. For
angular frequencies ω that are larger than the first transition frequency in the system, the
response matrix (E[2] − ωS[2]) is not positive definite, and the CG algorithm cannot be
used. The standard response equation may, in principle, be solved using the CR algorithm,
presented in Section 6.3. The CR algorithm has the same attractive features as the CG
algorithm and is applicable for equations with non-positive definite matrix, as discussed in
Section 6.3.1. However, the preconditioned CR algorithm may be applied safely only if the
preconditioner in Eq. (7.13) is positive definite, as described in Section 6.3.2.

7.4 The damped response equation

The damped response equation of the form Eq. (7.3) represents a set of linear equations for
a non-Hermitian matrix. Eq. (7.3) may be solved using real arithmetic when expressed in
terms of the two equations

(E[2] − ωS[2])XR = GR − γS[2]XI , (7.23a)

(E[2] − ωS[2])XI = GI + γS[2]XR , (7.23b)

where GR and GI is the real and the imaginary component of G, respectively. Eqs. (7.23a)
and (7.23b) are obtained by separating Eq. (7.3) into a real and an imaginary component.
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Eqs. (7.23a) and (7.23b) couple the real and imaginary components of the solution vector
via the right-hand sides. When Eqs. (7.23a) and (7.23b) are solved separately, it leads
to divergence in the resonance region, where the solution vector has a large eigenvector
component in both XR and XI . In the resonance region, the coupling between XR and XI

needs to be considered explicitly to get a robust and fast convergence. This may be done by
combining Eqs. (7.23a) and (7.23b)(

E[2] − ωS[2] γS[2]

γS[2] −(E[2] − ωS[2])

)(
XR

XI

)
=

(
GR

−GI

)
. (7.24)

Eq. (7.24) is a standard set of linear equations for a symmetric, but not positive definite,
real matrix where the coupling between XR and XI is taken into account explicitly. Since
the CG algorithm may be applied only on equations with positive definite matrix, it cannot
be used for solving Eq. (7.24). However, Eq. (7.24) may, in principle, be solved using the
CR algorithm with a less efficient, but positive definite preconditioner.

It should be noted that the algorithm presented in this section has not been used in
practice and is introduced here for simplifying discussion following in next chapters.
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8 Iterative algorithms with paired trial vectors

In the previous chapter standard iterative algorithms for solving response equations in the
general form have been introduced. As discussed in Section 3.2.2, the response matrices
E[2] and S[2], and therefore the response equations, have block structures given in Eq. (3.38.
Imposing this structure on the reduced subspace eigenvalue equation [41], was a remedy for
problems discussed in Section 7.2.3. Introducing paired structure in the reduced subspace
standard response equation, led to improvement in convergence [41]. The block structure of
reduced response equation may be obtained by adding trial vectors in the iterative subspace
algorithm in pairs, as will be described in this chapter.

The algorithm with paired trial vectors is described in context of solving the eigenvalue
and standard response equations in Sections 8.1 and 8.2, respectively. In Section 8.3, general
implementation is discussed in context of solving response equations in the linear-scaling
framework [23]. In Section 8.4, the algorithms with paired trial vectors for solving damped
response equations are introduced and compared with the previously used algorithm [29].

8.1 The eigenvalue equation

From the block diagonal form of E[2] in Eq. (3.61), it can be seen that for a ground state
wavefunction |0〉, Eq. (7.4) may be viewed as a symmetric eigenvalue equation. A ground
state must be stable both with respect to real and imaginary variations [87] and both A+B

and A−B must therefore be positive definite. When A+B and A−B are positive definite,
E[2] is also positive definite and Eq. (7.4) expressed as

( 1
ωp0
E[2] − S[2])Xp = 0 , (8.1)

becomes a symmetric eigenvalue equation with eigenvalues 1
ωp0

.
Eq. (8.1) has a block structure, and it is advantageous to keep this structure in the

reduced subspace equations. For that reason Olsen et al. introduced pairing in the iterative
subspace algorithm in Ref. [41], as will be described in this section.

In algorithm by Olsen et al., trial vectors are added to the subspace in pairs. Together
with a trial vector b

b =

(
bAI

bJB

)
, (8.2)

its paired counterpart bP

bP =

(
bJB

bAI

)
, (8.3)
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is added.

From the linear transformations of E[2] and S[2] on a trial vector b in Eq. (7.5), the linear
transformations on the paired vector bP are obtained at no extra cost as [23]

σPi = E[2]bPi , −ρPi = S[2]bPi . (8.4)

Eq. (8.4) is straightforwardly obtained from the two component expressions in Eqs. (3.38),
(8.2) and (8.3).

In an iterative subspace algorithm where trial vectors are added in pairs, after n iterations
a reduced space b2n consists of 2n trial vector

b2n = {b1, b2, ..., bn, b
P
1 , b

P
2 , ..., b

P
n } . (8.5)

The spaces of linear transformed vectors σ2n and ρ2n are also known. Due to no cost in
obtaining the paired counterparts, paired vectors are not stored on disk, and therefore the
storage does not increase compared to the algorithm presented in Section 7.1.

The reduced matrix equations of the form in Eq. (7.8) are constructed with the matrix
elements of the reduced generalized Hessian and metric matrices as

(E
[2]
red)ij = (b2n

i )Tσ2n
j , (S

[2]
red)ij = (b2n

i )Tρ2n
j , (8.6)

respectively. In the two-component form E
[2]
red and S[2]

red may be expressed as

E
[2]
red =

(
Ared Bred

Bred Ared

)
, S

[2]
red =

(
Σred ∆red

−∆red −Σred

)
, (8.7)

where Ared, Bred and Σred are symmetric and ∆red is an antisymmetric matrix of the di-
mension n. The reduced subspace matrices thus have the same structure as their full matrix
counterparts in Eq. (3.38).

Solving the reduced eigenvalue problem Eq. (7.8) yields the excitation energy ωRp0 and an
eigenvector (Xp)n+1 in the subspace Eq. (8.5)

(Xp)n+1 =
2n∑
i=1

(Xred)ibi . (8.8)

The residual for (Xp)n+1 becomes

Rn+1 = (E[2] − ωRp0S[2])(Xp)n+1 =
2n∑
i=1

[(Xp)red]i(σ
2n
i − ωRp0ρ2n

i ) . (8.9)
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The residual norm is calculated as a convergence test. A new trial vector bn+1 can be obtained
according to Eq. (7.13), and the new trial vector together with its paired counterpart bPn+1

are added to the reduced subspace in Eq. (8.5). Monotonic convergence is obtained for the
eigenvalues of the reduced space, see Appendix C in Paper B for details.

Due to the fact that all the response equations have the block structure, imposing the
block structure in the reduced subspace equation (by adding trial vectors in pairs) may be
used to improve the convergence when solving the standard linear response equations in
Eq. (7.2) and the damped response equation in Eq. (7.3). In Section 8.2, the algorithm
with paired trial vectors for solving the standard response equation will be described. In
Section 8.4, an extension of the paired algorithm for solving damped response equation will
be introduced.

8.2 The standard response equations

When pairing is used to solve a standard response equation in Eq. (7.2), the algorithm is
very similar to the one presented for the eigenvalue equation in Section 8.1. The reduced
equation in Eq. (7.8) is solved in the reduced space spanned by the subspace in Eq. (8.5),
where the matrix elements of the reduced generalized Hessian and metric matrices are given
in Eq. (8.6), and the reduced right-hand side is given by

(gbred)i = (b2n
i )TG . (8.10)

The residual becomes

Rn+1 = (E[2] − ωS[2])Xn+1 −G =
2n∑
i=1

(Xred)i(σ
2n
i − ωρ2n

i )−G . (8.11)

The residual norm is calculated to check for convergence and residuals are used to obtain a
new trial vectorbn+1, which together with its paired counterpart bPn+1 is added to the reduced
subspace and the iterations are continued until convergence.

As described in Section 7.3, it would be advantageous to solve the standard response
equation Eq. (7.2) using the CG algorithm, where the last three trial vectors are sufficient
to keep the information of all previous trial vectors. However, when together with the trial
vector its paired counterpart is added to the reduced space, no similar reduction in the
number of subspace vectors can be obtained, as shown in Appendix A, and all vectors have
to be stored.
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8.3 Implementation details

In Ref. [23], Coriani et al. described in detail a linear-scaling implementation of an algorithm
with paired trial vectors for the standard response equation and the eigenvalue equation.
In this implementation, expressions for the response functions are derived using a non-
redundant exponential parameterization of the density matrix in the AO basis [155].

Linear-scaling is obtained when all the key computational steps in solving the response
equation scale linearly. Coriani et al. proposed an AO preconditioning that fulfilled this
condition. In the AO basis, the overlap matrix S may be factorized

S = VTV , (8.12)

where V is either an upper triangular matrix U in the Cholesky basis, or the principal square-
root matrix S−1/2 in the Löwdin basis. The Hessian formulated in the orthogonalized AO
(OAO) basis is diagonally dominant. There is a slight preference for the Löwdin basis, since
it resembles most closely the original AO basis, ensuring the locality of orbitals is preserved
to the greatest possible extend [156]. In addition, the condition number of the OAO matrices
is reduced significantly, and the convergence of Eq. (7.4) is significantly improved.

For solving the damped response equations, the MO preconditioner is used.13 The precon-
ditioner contains redundant unoccupied-occupied components. The projectors P and PT are
introduced to circumvent this problem. The projections P and PT have the forms [23,155]

P(X) = PoXPT
v + PvXPT

o , PT (X) = PT
o XPv + PT

v XPo . (8.13)

Po and Pv are projectors onto the occupied and virtual orbital spaces, respectively,

Po = DS , Pv = 1−DS . (8.14)

In addition, to ensure that new trial vectors are linearly independent of the previous
ones, the trial vectors are orthonormalized

(bi)
Tbj = (bPi )TbPj = δij, (bPi )Tbj = (bi)

TbPj = 0. (8.15)

The implementation schemes used to obtain the linear-scaling algorithm for solving the
standard response equations are used also in the case of the damped response equation, as
will be described in the next section.

13Introducing preconditioning in AO (or another local basis) is planed.
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8.4 The damped response equation

In an iterative subspace algorithm for solving the damped response equation [in Eqs. (4.23)
and (7.3)] where the trial vectors are added in pairs, the trial vectors are split into the real
XR and imaginary XI components. This means that the reduced subspace will contain
improved trial vectors for both the real and imaginary components of the solution vector
together with their paired counterparts, and four vectors will be added in each iteration.

As mentioned is Section 7.4, Eq. (7.3) may be separated into a real and an imaginary part
as in Eqs. (7.23a) and (7.23b). The difficulties involved in solving Eq. (7.3) [or equivalently
Eqs. (7.23a) and (7.23b)] depend on whether the frequency ω is in a resonance or a far-off-
resonance region. If the frequency is in a far-off-resonance region, the coupling between the
real and imaginary components of the solution vector is small. In this region, the solution to
Eq. (7.3) may be obtained by solving Eqs. (7.23a) and (7.23b) using a common subspace for
the two equations. New trial vectors may thus be added using a strategy similar to the one
used when solving a standard response equation described in Section 8.2. This algorithm is
described in Section 8.4.1 and is denoted the one-subspace approach.

In the resonance region, the solution vector has a large eigenvector component in both
XR and XI leading to a large coupling between XR and XI when solving Eqs. (7.23a) and
(7.23b), which may cause divergence. In this case, Eq. (7.3) should be solved using a single
subspace, where the coupling in the solution vector is taken into account explicitly. This
approach will be described in Section 8.4.2 and is denoted the two-level-subspace approach,
due to the fact that two different subspaces are used, one for solving Eq. (7.3) (macro-
subspace) and one for generating new trial vectors (micro-subspace). Since convergence of
the algorithm may be improved by introducing preconditioning, the preconditioned two-
level-subspace approach will be presented in Section 8.4.3. A comparison to previously used
algorithm by Norman et al. [29] is given in Section 8.4.4.

8.4.1 One-subspace approach

A good performance of the one-subspace approach is observed when the frequency ω is far
from an excitation energy, leading to a small coupling between the real and the imaginary
components of the solution vector. In practice it can be used to determine the general
structure of the spectrum. If convergence is not obtained after a few iterations with the
one-subspace approach, it suggests that the frequency of interest is in the resonance region,
and to obtain the correct result the robust two-level-subspace approach must be applied.

In the one-subspace approach, the coupled equations in Eqs. (7.23a) and (7.23b) are
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solved simultaneously. After the n’th iteration, a subspace consisting of pairs of trial vectors
has been generated

b4n = {bR1 , bR,P1 , bI1, b
I,P
1 , bR2 , b

R,P
2 , bI2, b

I,P
2 , ..., bRn , b

R,P
n , bIn, b

I,P
n } , (8.16)

and the linearly transformed vectors σ4n and ρ4n are also known. The response equations
in Eqs. (7.23a) and (7.23b) may be solved in the reduced space of Eq. (8.16)

(E
[2]
red − ωS

[2]
red)X

R
red = GGGRred , (8.17a)

(E
[2]
red − ωS

[2]
red)X

I
red = GGGIred , (8.17b)

where the matrix elements of the reduced generalized Hessian and metric matrices are given
as

(E
[2]
red)ij = (b4n

i )Tσ4n
j , (S

[2]
red)ij = (b4n

i )Tρ4n
j , (8.18)

and the reduced right-hand sides are given by

(GGGRred)i = (b4n
i )TGGGR = (b4n

i )T (GR − γS[2]XI
n) , (8.19a)

(GGGIred)i = (b4n
i )TGGGIn = (b4n

i )T (GI + γS[2]XR
n ) , (8.19b)

where XR
n and XI

n are the optimal solution vectors in iteration n. The GGGred matrix is
constructed in each iteration [due to the fact that the right-hand sides in Eqs. (7.23a) and
(7.23b) contain γS[2]XI

n and γS[2]XR
n components, respectively, and therefore change in

each iteration] in contrast to E[2]
red and S[2]

red, which may be simply extended.
From the solution to the reduced problem Eqs. (8.17a) and (8.17b), the optimal solution

vectors of the (n+1)’th iteration XR
n+1 and XI

n+1 may be determined as

XR
n+1 =

∑
i

(XR
red)ib

4n
i ; XI

n+1 =
∑
i

(XI
red)ib

4n
i . (8.20)

The residuals for the optimal solutions XR
n+1 and XI

n+1 are constructed as

RR
n+1 = (E[2] − ωS[2])XR

n+1 −GR + γS[2]XI
n+1

=
4n∑
i=1

[(XR
red)i(σ

4n
i − ωρ4n

i ) + (XI
red)iγρ

4n
i ]−GR , (8.21a)

and

RI
n+1 = (E[2] − ωS[2])(XI

D)n+1 −GI − γS[2](XR
D)n+1

=
4n∑
i=1

[(XI
red)i(σ

4n
i − ωρ4n

i )− (XR
red)iγρ

4n
i ]−GI , (8.21b)
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Figure 8.1: Convergence of the xx component of the linear polarizability for a DNA frag-
ment consist of one nucleotide, obtained using the one-subspace approach (a) far from an
excitation energy, ω = 0.1 a.u., (b) close to an excitation energy, ω = 0.55 a.u..

respectively. Convergence is obtained when the sum of the norms of RR
n+1 and RI

n+1 is
smaller than a preset threshold. New trial vectors are generated from the preconditioned
residuals RR

n+1 and RI
n+1 and added to the subspace in Eq. (8.16).

Figure 8.1 illustrates the convergence obtained in a calculation of the xx component of the
linear polarizability for a DNA fragment consisting of one nucleotide using the one-subspace
approach. In Fig. 8.1a, the convergence in the far-off-resonance region is displayed. Solving
Eqs. (7.23a) and (7.23b) simultaneously leads to a rapid convergence due to a small coupling
between the real and the imaginary component of the solution vector. Figure 8.1b illustrates
the case where the frequency of interest is in the resonance region. Using the one-subspace
approach then leads to divergence, due to a large coupling between the real and imaginary
components of the solution vector. In this case it is necessary to use the much more robust
two-level-subspace approach.

8.4.2 Two-level-subspace approach

In the two-level-subspace approach after n iterations, Eq. (7.3) has been solved in a subspace
containing 4n trial vectors [see Eq. (8.16)]. The subspace analogue of Eq. (7.3) reads

(E
[2]
red − (ω + iγ)S

[2]
red)(X

R + iXI)red = (GR + iGI)red , (8.22)
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where the matrix elements of the reduced generalized Hessian and metric matrices are given
in Eq. (8.18) and the reduced right-hand side is given as

[(GR + iGI)red]i = (b4n
i )T (GR + iGI) . (8.23)

In this case, E[2]
red, S

[2]
red, and Gred are all constructed by extending the subspaces from the

previous iterations.
From the solution to the reduced equation Eq. (8.22), the optimal solution vectors of the

(n+1)’th iteration, XR
n+1 and XI

n+1, are obtained using Eq. (8.20) and the residuals RR
n+1

and RI
n+1 may be constructed from Eqs. (8.21a) and (8.21b). The residuals RR

n+1 and RI
n+1

are used to test for convergence.
In the two-level-subspace approach, new trial vectors are generated by solving the stan-

dard response equations separately

(E[2] − ωS[2])bRn+1 = GR − γS[2](XI
n+1 +RI

n+1) = GGGR , (8.24a)

(E[2] − ωS[2])bIn+1 = GI + γS[2](XR
n+1 +RR

n+1) = GGGI , (8.24b)

using the standard subspace algorithm for response equations described in Section 8.2.
(XR

n+1+RR
n+1) and (XI

n+1+RI
n+1) are used to construct right-hand sides, as the residuals

represent improvements to the solution vector from the orthogonal complement to the sub-
space b4n in Eq. (8.16).

As initial guesses for bR1 and bI1, the solutions of the standard response equation may be
used where the right-hand side GGGR is equal to the real component of gb, and GGGI is given by

GGGI = GI + γS[2]bR1 , (8.25)

where bR1 is the solution to the real response equation. Trial vectors used in obtaining bR1
and bI1 may be stored and used as start guesses for constructing new trial vectors in the
macro-subspace.

Figure 8.2 illustrates the convergence in the micro-subspaces for macro-iteration 1, 2
and 3 in the two-level-subspace algorithm. In the upper panel of Fig. 8.2, the previous
trial vectors are used as initial guesses in the micro-iterations while in the lower panels the
solutions to the micro-iterations are constructed from scratch in each macro-iteration. The
computational cost of the first macro-iteration is the same, while starting from the second
macro-iteration an improvement in convergence is seen in the approach shown in the upper
panel. Convergence is obtained after about 15 micro-iterations, where in contrast about 70
micro-iterations are needed when the vectors are not stored.
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Figure 8.2: Convergence of the first three macro-iterations of the xx component of the linear
polarizability for a DNA fragment consisting of two nucleotides, obtained using the two-
level-subspace approach, ω = 0.25 a.u., γ = 0.005 a.u.; Upper panel: trial vectors used to
obtain an optimal vector in the first macro-iteration are stored and used as a start guesses
in the next macro-iterations, Lower panel: trial vectors not stored.

8.4.3 Preconditioned two-level-subspace approach

Convergence in the global subspace may be sped up by preconditioning equation in Eq. (7.3)
with a preconditioner E[2]

0 .14 Using this preconditioner, instead of solving Eq. (7.3) an
equation of the form

P(E
[2]
0 )−1PT (E[2] − (ω + iγ)S[2])P(XR + iXI) = P(E

[2]
0 )−1PT (GR + iGI) , (8.26)

is solved, where the projections P and PT have been defined in Eq. (8.13).

In the n’th iteration, Eq. (8.26) has been solved in a subspace b4n consisting of the paired
trial vectors introduced in Eq. (8.16). σ̃4n and ρ̃4n (defined below) are also known. The
complex reduced space equation

[Ẽ
[2]
red − (ω + iγ)S̃

[2]
red](X

R
n+1 +XI

n+1)red = (G̃R + iG̃I)red , (8.27)

is solved, where the matrix elements of the reduced generalized Hessian and metric matrices
14It is assumed here that the ωS[2] and γS[2] terms in the preconditioner can be neglected due to the fact

that ω and γ are small. A more efficient preconditioner will be presented in the next chapter.
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Figure 8.3: Global convergence of the xx component of the linear polarizability for a DNA
fragment consisting of two nucleotides, obtained using the two-level-subspace approach (a)

and (c) without preconditioning; (b) and (d) with preconditioning; (a) and (b) ω = 0.25

a.u.; (c) and (d) ω = 0.45 a.u.; γ = 0.005 a.u..

and the gradient vector are given as

(Ẽ
[2]
red)ij = (b4n

i )T σ̃4n
j = (b4n

i )TP(E
[2]
0 )−1PT (σ4n

j ), (8.28a)

(S̃
[2]
red)ij = (b4n

i )T ρ̃4n
j = (b4n

i )TP(E
[2]
0 )−1PT (ρ4n

j ), (8.28b)

and

[(G̃R + iG̃I)red]i = (b4n
i )TP(E

[2]
0 )−1PT (GR + iGI) , (8.28c)

respectively. From the solution to the reduced equation Eq. (8.27), the optimal solution
vectors of the (n+1)’th iteration, XR

n+1 and XI
n+1, are obtained using Eq. (8.20), and the

residuals RR
n+1 and RI

n+1 are constructed from Eqs. (8.21a) and (8.21b).
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New trial vectors are generated by solving the following equations separately

P(E
[2]
0 )−1PT (E[2] − ωS[2])bRn+1 =

P(E
[2]
0 )−1PT{GR − γS[2][XI

n+1 + P(E
[2]
0 )−1PT (RI

n+1)]} , (8.29a)

and

P(E
[2]
0 )−1PT (E[2] − ωS[2])bIn+1 =

P(E
[2]
0 )−1PT{GI + γS[2][XR

n+1 + P(E
[2]
0 )−1PT (RR

n+1)]} . (8.29b)

The solutions to Eqs. (8.29a) and (8.29b) are equivalent to the ones obtained by solving
separately the standard response equations

(E[2] − ωS[2])bRn+1 = GR − γS[2](XR
n+1 + P(E

[2]
0 )−1PT (RI

n+1)) , (8.30a)

(E[2] − ωS[2])bIn+1 = GI + γS[2](XR
n+1 + P(E

[2]
0 )−1PT (RR

n+1)) , (8.30b)

using the standard subspace algorithm for response equations described in Section 8.2.
Figure 8.3 displays the convergence obtained using the two-level-subspace approach for

two chosen frequencies. Results shown in Figs. 8.3a and 8.3c have been obtained using the
algorithm presented in Section 8.4.2, and Figs. 8.3b and 8.3d show results obtained using the
preconditioned algorithm (described above). The results reported in Fig. 8.3b have been ob-
tained in half the number of iterations compared to the results showed in Fig. 8.3a. For higher
frequency, convergence has not been obtained in 60 iterations using the non-preconditioned
algorithm, as can be seen from Fig. 8.3c, whereas when the preconditioned algorithm has
been used, (relatively) fast convergence can be observed (see Fig. 8.3d). Figure 8.3 displays
the same behavior in the convergence of the real and imaginary components of the solution of
Eq. (7.3), due to the fact that they depend on each other, as may be seen from Eqs. (7.23a)
and (7.23b).

8.4.4 Comparison to the approach by Norman et al.

In the approach for solving the complex response equation in Eq. (7.3), presented by Nor-
man et al. [29], the complex response equation is solved using an algorithm reminiscent of
the two-level-subspace approach described in Section 8.4.2. However, their approach does
not involve the simpler algorithm described in Section 8.4.1, which is used mainly to scan
the spectrum and determine the region where the more robust solver needs to be applied.
That makes the computational cost for calculations with frequencies far from any excitation
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energies much higher compared to the two-level-subspace approach. The implementation
presented in Ref. [29] is computationally more demanding than the two-level-subspace ap-
proach, since it relies on solving a generalized eigenvalue problem to generate start vectors.
The first eigenvectors are a very good approximation for the solution of Eq. (7.3) close to
the excitation energy, but not necessarily for large systems having many small excitation
energies in the low frequency region (see e.g. Fig 1.2). For the DNA fragment consisting
of two nucleotides, the first 50 excitations are very low lying states with small intensities,
and are not a good approximation for states with higher excited states. In the approach
presented above the solutions to the standard response equations are used where the right-
hand sides are equal to the real component of gb and Eq. (8.25). They give reasonably good
starting guesses for all frequencies. Another difference is the generation of the new trial
vectors in macro-subspace. In the approach presented in Ref. [29], new trial vectors are in
each macro-iteration generated from scratch by solving the standard response equations with
an improved right-hand side. In the approach described in Section 8.4.2, the vectors used
to construct the first trial vectors in the global space are stored and give a very good start-
ing guesses for trial vectors in next macro-iterations, which improves convergence radically
(see Fig. 8.2). However, it should be noted that the improvement in convergence is on the
expense of disk storage, and using the two-level-subspace may therefore be impractical (or
even impossible) for very large systems.
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9 Iterative algorithms with symmetrized trial vectors

In the previous section, the algorithms with paired trial vectors have been introduced for
solving response equations in Eqs. (7.2)–(7.4). An improvement in convergence has been
observed when these algorithms have been used [41], however, an attempt to apply CG/CR
algorithms on the standard and damped response equation turned out unsuccessfully, see
Appendix A.

Saue and co-workers [157–159] introduced a symmetry division of trial vectors for solv-
ing the standard response and eigenvalue equations in the four-component HF and DFT
approximations. In their approach, trial vectors are split according to their Hermiticity and
time-reversal symmetry, which are the two fundamental operator symmetries in a relativistic
framework. The trial vectors are complex due to the complex nature of the four-component
wavefunction, however, the reduced subspace equations remain real, due to the symmetry
properties of E[2] and S[2]. Recently, Villaume et al. [160] have generalized this approach to
solve the damped response equation, including a presentation of a highly efficient precon-
ditioner. In spirit of this work, an algorithm with symmetrized trial vectors is introduced
in this section, which combines the improvement in convergence (due to spanning larger
space than in the general subspace approach presented in Section 7.1) with a very efficient
preconditioner used to obtain new trial vectors. In case of the damped response equation
the disk storage can be significantly reduced compared to when the two-level-subspace and
preconditioned two-level-subspace approaches have been applied.

In Section 9.1, an introduction to the algorithm with symmetrized trial vectors is given.
In Sections 9.2, 9.3, and 9.4, the algorithm with symmetrized trial vectors will be introduced
for solving the response eigenvalue equation, the standard response equation and the damped
response equation, respectively. In Sections 9.4.1 and 9.5, the algorithm is compared to the
one proposed by Villaume et al. in Ref. [160] and to the algorithm with paired trial vectors
described in Section 8, respectively.

9.1 Introduction

A vector may be written as a sum of a symmetric and an antisymmetric component. Due to
the features of linear transformations σ and ρ described below, it might be advantageous to
split the trial vectors in this fashion during the iterative procedure. Using this scheme, the
paired structure of the Hessian and metric matrices in the reduced space is imposed during
the whole iterative procedure.
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The symmetric (g) and antisymmetric (u) trial vectors are defined as

bg =

(
bIA

bIA

)
, (9.1)

and

bu =

(
bJB

−bJB

)
, (9.2)

respectively. The symmetry of a trial vector is conserved for the E[2] linear transformation

σg = E[2]bg; σu = E[2]bu , (9.3)

and reversed for the S[2] linear transformation

ρg = S[2]bu; ρu = S[2]bg . (9.4)

It should be noted that each of the linear transformations σg and σu (ρg and ρu) can be
carried out with an operation cost equal to half of the cost of linear transformation σ (ρ)
on a general trial vector given in Eq. (7.5).

The symmetry of the E[2] and S[2] matrices in Eqs. (9.3) and (9.4) makes it advantageous
to split the solution to the response equations Eqs. (7.2) and (7.4) into symmetric and
antisymmetric components

X = Xg +Xu , (9.5)

and the solution to the damped response equation Eq. (7.3) in terms of the Hermitian and
anti-Hermitian components

X = XH +XA , (9.6)

where
XH = XR

g + iXI
u, XA = XR

u + iXI
g , (9.7)

and XR
g , XI

g , XR
u and XI

u are real.

9.2 The response eigenvalue equation

Using the symmetry of the E[2] and S[2] matrices and expressing the solution vector as in
Eq. (9.5), the response eigenvalue equation in Eq. (7.4) may be written in the two-component
form (

E[2] −ωp0S[2]

−ωp0S[2] E[2]

)(
Xg,p

Xu,p

)
=

(
0

0

)
, (9.8)
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where the coupling that occurs between the two components Xg,p and Xu,p is introduced
explicitly. Eq. (9.8) may be written as a standard eigenvalue equation(

E[2] 0

0 E[2]

)(
Xg,p

Xu,p

)
= ωp

(
0 S[2]

S[2] 0

)(
Xg,p

Xu,p

)
, (9.9)

where

(
0 S[2]

S[2] 0

)
is a generalized metric which is not positive definite. However, if(

E[2] 0

0 E[2]

)
is viewed as a metric, Eq. (9.9) is a standard eigenvalue equation for a

Hermitian matrix

(
0 S[2]

S[2] 0

)
.

Eq. (9.8) may be solved using an iterative subspace algorithm where in each iteration,
a symmetric and an antisymmetric trial vector is added. After iteration n, two sets of trial
vectors have been constructed

bmg = {b1g, b2g, ..., bmg}, (9.10a)

bku = {b1u, b2u, ..., bku} , (9.10b)

(where m, k ≤ n) and the linearly transformed vectors σmg , σku, ρmu and ρkg are known.
Eq. (9.8) is solved in the subspace given by Eqs. (9.10a) and (9.10b)(

E
[2]
red,gg −ωRp0S[2]

red,gu

−ωRp0S[2]
red,ug E

[2]
red,uu

)(
(Xg,p)red

(Xu,p)red

)
=

(
0

0

)
, (9.11)

where
E

[2]
red,gg = bTgE

[2]bg, E
[2]
red,uu = bTuE

[2]bu,

S
[2]
red,gu = bTg S

[2]bu, S
[2]
red,ug = bTuS

[2]bg .
(9.12)

The optimal vectors in the subspace in Eqs. (9.10a) and (9.10b) read

Xn+1,g,p =
m∑
i=1

[(Xg,p)red]ibig, (9.13a)

Xn+1,u,p =
k∑
i=1

[(Xu,p)red]ibiu . (9.13b)

From the solution vectors the residuals may be obtained as

Rn+1,g = E[2]Xn+1,g,p − ωRp0S[2]Xn+1,u,p

=
m∑
i=1

((Xg,p)red)iσig − ωRp0
k∑
i=1

((Xu,p)red)iρig , (9.14a)
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Rn+1,u = E[2]Xn+1,u,p − ωRp0S[2]Xn+1,g,p

=
k∑
i=1

((Xu,p)red)iσiu − ωRp0
m∑
i=1

((Xg,p)red)iρiu , (9.14b)

and are used to check for convergence.
New trial vectors bn+1,g and bn+1,u may be obtained from the optimal solution vectors

Xn+1,g and Xn+1,u using the Davidson and the Olsen algorithms, as will be described in
Sections 9.2.1 or 9.2.2, respectively. The new trial vectors are added to the reduced subspaces
in Eqs. (9.10a) and (9.10b) and the iterative procedure is repeated until convergence.

9.2.1 New trial vectors using the Davidson algorithm

In the Davidson algorithm (see Section 7.2.1), a new trial vector is obtained using Eq. (7.13).
Using the residuals and trial vectors expressed in terms of a symmetric and antisymmetric
component, Eq. (7.13) may be expressed as

(bn+1,g + bn+1,g) = (E
[2]
0 − ωRp0S[2])−1(Rn+1,g +Rn+1,u) . (9.15)

Eq. (9.15) may be expressed in the two-component form(
bn+1,g

bm+1,u

)
= [(E

[2]
0 )2 − (ωRp )2(S[2])2]−1

(
E

[2]
0 ωRp0S

[2]

ωRp0S
[2] E

[2]
0

)(
Rn+1,g

Rn+1,u

)
, (9.16)

giving directly a new symmetric and an antisymmetric trial vector.

9.2.2 New trial vectors using the Olsen algorithm

After iteration n in the subspace algorithm presented in Section 9.2, the optimal solution
vectors Xn+1,g,p and Xn+1,u,p in Eqs. (9.13a) and (9.13b), the residuals vectors given in
Eqs. (9.14a) and (9.14b) and the eigenvalue ωRp0 have been determined. It can be assumed
that the optimal vectors Xn+1,g,p and Xn+1,u,p constitute the zeroth-order solution to the
eigenvalue equation in the Olsen algorithm (see Section 7.2.2) and for simplicity they may
be written as

X0 =

(
X0

g

X0
u

)
=

(
Xn+1,g,p

Xn+1,u,p

)
. (9.17)

The optimal vector X0 satisfies a normalization condition analogous to Eq. (3.57)

(X0)T

(
0 S[2]

S[2] 0

)
X0 = (X0

g )TS[2]X0
u + (X0

u)TS[2]X0
g = 1 . (9.18)
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ωRp0 is the zeroth-order eigenvalue ω0
p0. The Olsen algorithm may now be used as described

in Section 7.2.2.

Expressing Eq. (9.8) in terms of the zeroth-order and correction components, given in
Eqs. (3.53), (7.16) and (7.17), yields(

E
[2]
0 +E

[2]
1 −(ω0

p0 + ω1
p0)S[2]

−(ω0
p0 + ω1

p0)S[2] E
[2]
0 +E

[2]
1

)
(X0 +X1) = 0 . (9.19)

By neglecting terms that are quadratic in the correction, X1 may be obtained as

X1 = −
(

E
[2]
0 −ω0

p0S
[2]

−ω0
p0S

[2] E
[2]
0

)−1 [(
E[2] −ω0

p0S
[2]

−ω0
p0S

[2] E[2]

)
X0 − ω1

p0

(
0 S[2]

S[2] 0

)
X0

]

= −L−1

[
Rn+1 − ω1

p0

(
0 S[2]

S[2] 0

)
X0

]
, (9.20)

where L−1 is an easily constructed preconditioner matrix showed in Section 9.2.1, and Rn+1

is given as

Rn+1 =

(
Rn+1,g

Rn+1,u

)
=

(
E[2] −ω0

pS
[2]

−ω0
pS

[2] E[2]

)
X0 , (9.21)

whereRn+1,g andRn+1,u are the residual vectors given in Eqs. (9.14a) and (9.14b). Requiring
that the eigenvector correction X1 is orthogonal to X0 in the generalized S[2] [as given in
Eq. (7.20)], ω1

p0 may be determined in analogy with Eq. (7.21)

ω1
p0 =

(X0)T

(
0 S[2]

S[2] 0

)(
E

[2]
0 −ω0

p0S
[2]

−ω0
p0S

[2] E
[2]
0

)−1(
E[2] −ω0

p0S
[2]

−ω0
p0S

[2] E[2]

)
X0

(X0)T

(
0 S[2]

S[2] 0

)(
E

[2]
0 −ω0

p0S
[2]

−ω0
p0S

[2] E
[2]
0

)−1(
0 S[2]

S[2] 0

)
X0

=

(X0)T

(
0 S[2]

S[2] 0

)
L−1Rn+1

(X0)T

(
0 S[2]

S[2] 0

)
L−1

(
0 S[2]

S[2] 0

)
X0

. (9.22)

Using the Olsen algorithm, new trial vectors are obtained without additional linear trans-
formations compared to the Davidson algorithm, as can be seen from Eq. (9.20). The term(

0 S[2]

S[2] 0

)
X0 is determined when the residual vectors are calculated.
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9.3 The standard response equation

Inserting Eq. (9.5) into Eq. (7.2) and writing Eq. (7.2) in the two-component form gives(
E[2] −ωS[2]

−ωS[2] E[2]

)(
Xg

Xu

)
=

(
Gg

Gu

)
, (9.23)

where Gg and Gu are the symmetric and antisymmetric components of the gradient vector
G, respectively. Eq. (9.23) may be solved using a subspace algorithm as for the response
eigenvalue equation. Assuming that after iteration n subspaces of the form Eqs. (9.10a) and
(9.10b) have been constructed, the reduced standard response equation(

E
[2]
red,gg −ωS[2]

red,gu

−ωS[2]
red,ug E

[2]
red,uu

)(
(Xg)red

(Xu)red

)
=

(
Gred,g

Gred,u

)
, (9.24)

are solved, where the reduced Hessian and metric matrices are given in Eq. (9.12) and the
reduced right-hand side vector reads

Gred,g = bTgGg, Gred,u = bTuGu. (9.25)

Solving Eq. (9.24) leads to the optimal solution vectors given in Eqs. (9.13a) and (9.13b).
The residuals Rn+1,g and Rn+1,u may then be obtained as

Rn+1,g = E[2]Xn+1,g − ωS[2]Xn+1,u −Gg

=
n∑
i=1

((Xg)red)iσig − ω
n∑
i=1

((Xu)red)iρig −Gg , (9.26a)

Rn+1,u = E[2]Xn+1,u − ωS[2]Xn+1,g −Gu

=
n∑
i=1

((Xu)red)iσiu − ω
n∑
i=1

((Xg)red)iρiu −Gu . (9.26b)

From the residuals, new trial vectors may be constructed by preconditioning according to
Eq. (9.16) where ωRp0 is replaced by ω. The iterative sequence is continued until convergence.

Eq. (9.23) constitutes a set of linear equations for a symmetric matrix. This means that
for small frequency parameter ω Eq. (9.23) may be solved using the CG algorithm. For
higher frequencies, the matrix in Eq. (9.23) is not positive definite, therefor, in principle, the
CR algorithm may be applied in this case, however not with the efficient preconditioner, see
Section 6.3.2.
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9.4 The damped response equation

The damped response equation may be solved in an analogous way using the algorithm with
symmetrized trial vectors.

Inserting Eq. (9.6) into the damped response equation in Eq. (7.3) gives a set of linear
equations for each of the four components XR

g , XR
u , XI

g and XI
u

E[2]XR
g − ωS[2]XR

u + γS[2]XI
u = GR

g ,

E[2]XR
u − ωS[2]XR

g + γS[2]XI
g = GR

u ,

E[2]XI
u − ωS[2]XI

g − γS[2]XR
g = GI

u ,

E[2]XI
g − ωS[2]XI

u − γS[2]XR
u = GI

g ,

(9.27)

where GR
g and GR

u (GI
g and GI

u) are the symmetric and antisymmetric components of the
real (imaginary) part of the gradient vector G. Eq. (9.6) may be expressed in terms of a
coupled set of linear equations for a real symmetric matrix

E[2] −ωS[2] γS[2] 0

−ωS[2] E[2] 0 γS[2]

γS[2] 0 −E[2] ωS[2]

0 γS[2] ωS[2] −E[2]



XR

g

XR
u

XI
u

XI
g

 =


GR
g

GR
u

−GI
u

−GI
g

 . (9.28)

where the coupling between the different components is considered explicitly. Eq. (9.28) may
be solved in the reduced subspace spanned by real vectors

bR,pg = {bR1g, bR2g, ..., bRpg}, (9.29a)

bR,qu = {bR1u, bR2u, ..., bRqu}, (9.29b)

bI,rg = {bI1g, bI2g, ..., bIrg}, (9.29c)

bI,su = {bI1u, bI2u, ..., bIsu} , (9.29d)

(where p, q, r, s ≤ n), analogously to the standard response equation. The residuals are given
as

RR
g = E[2]XR

g − ωS[2]XR
u + γS[2]XI

u −GR
g ,

RR
u = E[2]XR

u − ωS[2]XR
g + γS[2]XI

g −GR
u ,

RI
u = −E[2]XI

u + ωS[2]XI
g + γS[2]XR

g +GI
u ,

RI
g = −E[2]XI

g + ωS[2]XI
u + γS[2]XR

u +GI
g ,

(9.30)

and are used to check for convergence. In the subspace iterative approach, new trial vectors
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are obtained by preconditioning residuals in accordance to Eq. (7.13)


bRn+1,g

bRn+1,u

−bIn+1,u

−bIn+1,g

 = P ⊗


A B C D
B A D C
C D −A −B
D C −B −A




RR
g

RR
u

RI
u

RI
g

 , (9.31)

where P , A, B, C and D are given by

P = [(E2
0 − (ω2 − γ2)1)2 + 4ω2γ21]−1 ,

A = E
[2]
0 [(E

[2]
0 )2 − (ω2 − γ2)1] ,

B = ωS[2][(E
[2]
0 )2 − (ω2 + γ2)1] , (9.32)

C = −γS[2][(E
[2]
0 )2 + (ω2 + γ2)1] ,

D = −2ωγE
[2]
0 1 .

The condition number of Eq. (9.28) is significantly reduced by the preconditioning in Eq. (9.31)
and the convergence is radically improved.

9.4.1 Damped response equations using the algorithm of Villaume et al.

In Ref. [160], Villaume et al. described how the response equations within relativistic theory
may be efficiently solved using the algorithm where the solution vectors are split according
to their Hermiticity and the time-reversal symmetry

X = X++ +X−+ +X+− +X−− , (9.33)

where the first and the second superscript signs correspond to Hermiticity and time-reversal
symmetry, respectively. The vectors X++, X−+, X+− and X−− are complex. In a non-
relativistic framework, the time-reversal symmetry cannot be exploited and is, in a sense,
replaced by the introduction of spin-adapted excitation operators. The algorithm of Villaume
et al. may be simplified to be applicable to the non-relativistic damped response equation
in Eq. (7.3). Villaume et al. convert time-reversal anti-symmetric elements into symmetric
ones by extracting an imaginary phase, which also reverses the Hermiticity

X = X++ +X−+ + i(X̄−+ + X̄++) . (9.34)



9. ITERATIVE ALGORITHMS WITH SYMMETRIZED TRIAL VECTORS 103

Inserting Eq. (9.34) into Eq. (7.3) and assuming that gb in Eq. (7.3) is a Hermitian property
gradient, GH , gives four coupled sets of linear equations

E[2]X+ − ωS[2]X− + γS[2]X̄− = G+ ,

E[2]X− − ωS[2]X+ + γS[2]X̄+ = 0 ,

E[2]X̄− − ωS[2]X̄+ − γS[2]X+ = 0 , (9.35)

E[2]X̄+ − ωS[2]X̄− − γS[2]X− = 0 .

Eq. (9.35) is analogous to Eq. (9.27) with the difference that X+, X−, X̄− and X̄+ in
Eq. (9.35) are complex while XR

g , XR
u , XI

u and XI
g in Eq. (9.27) are real. Eq. (9.35) is

solved in the reduced space and new trial vectors are obtained by using a very efficient
preconditioner similar to Eq. (9.31).

Eq. (9.35) could be written in symmetric form analogous to Eq. (9.28), where the solution
vector is expressed in terms of the complex components XH , XA, X̄A and X̄H , while the
solution to Eq. (9.28) is written in terms of real vectors. In the case where the gradient
vector GH is either purely real or purely imaginary, the algorithm presented by Villaume et
al. gives trial vectors that are either purely real or imaginary, and the iterative sequence of
the algorithm becomes identical to the one obtained when algorithm presented in Section 9.4
is used.

9.5 Comparison to the algorithm with paired trial vectors

In Chapter 8 advantages of the algorithm with paired trial vectors comparing to the general
iterative subspace approach described in Chapter 7 have been discussed. In this chapter,
the algorithm with symmetrized trial vectors was introduced. It may be shown that a set
of a symmetric and an antisymmetric vector span the same space as the set of a trial vector
and its paired counterpart. Therefore, the algorithm with symmetrized trial vectors has the
same advantages over the general iterative subspace approach as the algorithm with paired
trial vectors.

Symmetric (g) and antisymmetric (u) components of a vector may be obtained from the
paired trial vectors in Eqs. (8.2) and (8.3) as

bg =
1

2
(b+ bP ) =

1

2

(
bAI + bJB

bJB + bAI

)
, (9.36a)

bu =
1

2
(b− bP ) =

1

2

(
bAI − bJB
bJB − bAI

)
. (9.36b)
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Table 9.1: Residual norm obtained when solving the standard response equation Eq. (7.2)
for a single water molecule using the algorithm with paired trial vectors (second column)
and the algorithm with symmetrized trial vectors (third–fifth columns) , HF/cc-pVDZ,
threshold=10−4

Iteration iterative approach with trial vectors of the type:
number paired symmetrized

|R| |Rg| |Ru| |Rg +Ru|
1 1.17004 0.14243 1.16134 1.17004
2 0.61652 0.09143 0.60971 0.61652
3 0.10515 0.01461 0.10413 0.10515
4 0.01494 0.00329 0.01457 0.01494
5 0.00181 0.00043 0.00176 0.00181
6 0.00019 0.00006 0.00018 0.00019
7 0.00002 0.00001 0.00001 0.00002

Adding one symmetric and one antisymmetric trial vector in a subspace algorithm is thus
equivalent to adding a set of paired vectors and thus ensures an implicit paired structure of
the reduced space equation.

In Table 9.1, iteration sequences for the algorithms with paired and symmetrized trial
vectors are given, for solving the standard response equation in Eq. (7.2) for a single water
molecule at frequency ω = 0.2 a.u. The calculations have been performed at the HF/cc-
pVDZ level of theory, and the response equation have been solved to a residual norm of 10−4.
Residuals R, Rg and Ru are given in Eqs. (8.11), (9.26a) and (9.26b), respectively. From
the second and the fifth column, it can easily be concluded that the algorithms with paired
and symmetrized trial vectors span the same space, and therefore give identical iteration
sequence. It is due to the fact that symmetrized trial vectors may be considered as a special
set of paired trial vectors, as discussed above.

When the algorithm with symmetrized trial vectors is used, the response equations are
split into their symmetric and antisymmetric components, and they may be viewed as a
linear equation problem with a symmetric matrix. The standard and damped response
equations can, in principle, be solved using the CG/CR algorithms. However, although
in several numerical examples performance of the preconditioned CR algorithm for a non-
positive definite matrix (and preconditioner) is correct (as will be reported in the next
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section), these algorithms cannot be safely used for higher frequencies.
Although the convergence rate of both algorithm is identical, using symmetrized trial

vectors is advantageous over the paired set for solving the damped response equation, due to
the fact that new trial vectors are determined efficiently with a very effective preconditioner
[in Eq. (9.31)] and the disk storage is reduced compared to the case when the two-level-
subspace approach, presented in Section 8.4 was used.
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10 Illustrative results

The results presented in this chapter demonstrate the performance of various algorithms
used for solving response equations. The different algorithms were presented in details in
Chapters 6–9. The convergence of the eigenvalue response equation, Eq. (7.4), using the
Davidson and Olsen algorithms, is discussed in Section 10.1. The performance of different
algorithms for solving the standard response equation, Eq. (7.2), is described in Section 10.2.
In Section 10.3, the efficiency of different algorithms in the context of solving the damped
response equation, Eq. (7.3), is compared. In addition, calculations of the real and imaginary
components of the linear polarizability for different systems are also reported in Section 10.3.

All calculations have been carried out using a local version of DALTON [1] and LSDAL-
TON [2] packages, where all discussed algorithms have been implemented. Preconditioned
algorithms have been used in the calculations reported in this chapter unless otherwise stated.

10.1 The eigenvalue response equation

In Table 10.1, the convergence of response eigenvalue equation in Eq. (7.4) is reported for a
dipeptide alanine-tryptophan (Ala-Trp), displayed in Fig 10.1a. The calculations have been
performed at the CAM-B3LYP/6-31G [142,161] level of theory, using the geometry obtained
in the MAESTRO program [162] without carrying out any additional optimization. The
response eigenvalue equation has been solved for the first eigenvalue, to a residual norm of
10−4. Three different iterative algorithms have been used: (i) the Davidson algorithm with
paired trial vectors (described in Section 8.1), (ii) the Davidson algorithm with symmetrized
trial vectors (described in Section 9.2.1) and (iii) the Olsen algorithm with symmetrized
trial vectors (described in Section 9.2.2). The residual R in the Davidson algorithm with
paired trial vectors is given in Eq. (8.9). The residuals Rg and Ru in the algorithms with
the symmetrized trial vectors are given in Eqs. (9.26a) and (9.26b), respectively.

As can be seen from the second and the third column in Table 10.1, the Davidson al-
gorithms with paired and with symmetrized trial vectors give identical iteration sequences.
This is due to the fact that symmetrized vectors may be considered as a special set of paired
vectors, as discussed in Section 9.5. Therefore, vectors in both algorithms span the same
space in each iteration. Since the paired structures of the reduced Hessian and metric ma-
trices (E[2]

red and S[2]
red) are preserved during the iterative procedure, paired eigenvalues are

obtained in the reduced subspace in both cases.

From the third and the fourth column in Table 10.1, it can be seen that the iteration
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(f)

(d)(c)

(b)(a)

(e)

Figure 10.1: Molecular structures of (a) Ala-Trp, (b) alanine, (c) pCT−, (d) pCA−, (e)
one nucleotide and (f) two nucleotides.
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Table 10.1: Residual norm obtained when solving the eigenvalue equation for the first eigen-
value, for Ala-Trp, using (i) the Davidson algorithm with paired trial vectors (second col-

umn), (ii) the Davidson algorithm with symmetrized trial vectors (third column) and (iii)
the Olsen algorithm with symmetrized trial vectors (fourth column). CAM-B3LYP/6-31G,
threshold=10−4.

Iteration Davidson alg. Olsen alg.
number paired symmetrized symmetrized

|R| |Rg +Ru| |Rg +Ru|
1 0.11663 0.11663 0.11663
2 0.03819 0.03819 0.03819
3 0.02775 0.02775 0.02782
4 0.01723 0.01723 0.01725
5 0.02148 0.02148 0.02149
6 0.02492 0.02492 0.02488
7 0.03624 0.03624 0.03628
8 0.03034 0.03034 0.03036
9 0.02421 0.02421 0.02423
10 0.01862 0.01862 0.01860
11 0.01692 0.01692 0.01676
12 0.01282 0.01282 0.01276
13 0.01272 0.01272 0.01266
14 0.00688 0.00688 0.00687
15 0.00343 0.00343 0.00341
16 0.00228 0.00228 0.00226
17 0.00141 0.00141 0.00139
18 0.00146 0.00146 0.00144
19 0.00134 0.00134 0.00132
20 0.00068 0.00068 0.00068
21 0.00045 0.00045 0.00045
22 0.00030 0.00030 0.00030
23 0.00018 0.00018 0.00018
24 0.00008 0.00008 0.00008
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sequences obtained using the Olsen and the Davidson algorithms are nearly identical. The
Olsen algorithm does not give significant improvement unless E[2]

0 is approaching E[2] in
Eq. (9.11), and this is, in general, not the case when response eigenvalue equations are
solved. Therefore, it may be concluded that response eigenvalue equations may safely be
solved using the Davidson algorithm with paired or symmetrized trial vectors.

10.2 The standard response equation

In this section, the convergence of various algorithms for solving the standard response
equation in Eq. (7.2), is compared for alanine (see Fig. 10.1b). Calculations are performed at
the HF/6-31G level of theory using the geometry taken from the NIST on-line database [163].
The response equations have been solved to a residual norm of 10−4. The calculations have
been performed in two frequency regions: at ω = 0.1 a.u. (relatively low frequency in the
non-resonance region, ω1 = 0.2129 a.u.) presented in Section 10.2.1, and at ω = 0.4 a.u.
(relatively large frequency in the resonance region) reported in Section 10.2.2.

10.2.1 Performance of standard response algorithms in the off-resonance region

In Table 10.2, the convergence of the standard response equation is presented for alanine at
the frequency ω = 0.1 a.u.. Four different iterative algorithms have been used: (i) the general
subspace approach (described in Section 7.3), (ii) the subspace algorithm with symmetrized
trial vectors (described in Section 9.3), (iii) the conjugate gradient (CG) algorithm with
symmetrized trial vectors (described in Sections 6.2 and 9.3) and (iv) the conjugate residual
(CR) algorithm with symmetrized trial vectors (described in Sections 6.3 and 9.3). The CG
and CR algorithms may be applied, since for ω = 0.1 a.u., both the matrix in Eq. (9.23)
and the preconditioner are positive definite. Results obtained using the subspace algorithm
with paired trial vectors (described in Section 8.2) are not listed in Table 10.2, due to the
fact that the iteration sequence is identical to the one obtained using the subspace algorithm
with symmetrized trial vectors, as presented in Table 9.1. The residuals R (in the general
subspace approach), Rg and Ru (in the algorithms with the symmetrized trial vectors) are
given in Eqs. (7.12), (9.26a) and (9.26b), respectively.

When comparing the results obtained using the subspace algorithm with symmetrized
trial vectors (third–fifth column) to the iterative sequence obtained with the general subspace
approach (second column), a reduction in number of iterations is observed. This is due to the
fact that a larger subspace is spanned when symmetrized trial vectors are introduced. The
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Table 10.2: Residual norm obtained when solving the standard response equation for alanine
at ω = 0.1 a.u., using different algorithms: (i) the general subspace approach (second
column), (ii) the subspace algorithm with symmetrized trial vectors (third–fifth column),
(iii) the CG algorithm with symmetrized trial vectors (sixth column) and (iv) the CR
algorithm with symmetrized trial vectors (seventh column); HF/6-31G, threshold=10−4.

Iteration iterative approach with trial vectors of the type:
number general symmetrized

subspace CG CR
|R| |Rg| |Ru| |Rg +Ru| |Rg +Ru| |Rg +Ru|

1 4.51473 0.12568 1.81342 1.81777 0.81189 0.71915
2 1.85994 0.04235 0.68710 0.68841 0.23247 0.22109
3 0.47364 0.02104 0.18558 0.18677 0.09411 0.08346
4 0.17550 0.01044 0.08186 0.08252 0.05206 0.04005
5 0.08012 0.00363 0.04100 0.04116 0.03190 0.02242
6 0.04412 0.00180 0.02361 0.02368 0.01961 0.01384
7 0.03078 0.00076 0.00930 0.00933 0.00698 0.00591
8 0.01389 0.00045 0.00396 0.00399 0.00364 0.00301
9 0.00523 0.00014 0.00177 0.00178 0.00151 0.00133
10 0.00198 0.00004 0.00050 0.00050 0.00047 0.00043
11 0.00084 0.00001 0.00018 0.00018 0.00018 0.00017
12 0.00054 0.00001 0.00004 0.00004 0.00005 0.00005
13 0.00019
14 0.00005

improvement is not dramatic, however, it is obtained without additional cost, as discussed
in Chapter 9.

When comparing the fifth and the sixth columns in Table 10.2, it can be seen that the
iteration sequence for the subspace algorithm with symmetrized trial vectors differs from its
CG counterpart. This is related to the fact that in the CG algorithm, optimal coefficients are

determined for vectors of the form b =

(
bg

bu

)
[see Eq. (6.18)], while in the subspace approach,

optimal coefficients are obtained for the individual components bg and bu as expressed in
Eq. (9.24). However, as can be seen in Table 10.2, this does not change the convergence rate.
Comparing the sixth and the seventh columns in Table 10.2 leads to the conclusion that the
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convergence rates of the CG and CR algorithms are similar (as discussed in Ref. [148]).

10.2.2 Performance of standard response algorithms in the resonance region

In Fig. 10.2, the convergence of the standard response equation is reported for alanine in the
resonance region (ω = 0.4 a.u.). Three different iterative algorithms have been used: (a) the
general subspace approach, (b) the subspace algorithm with symmetrized trial vectors and
(c) the CR algorithm with symmetrized trial vectors. The CG algorithm has not been used,
due to the fact that for ω = 0.4 a.u., the matrix in Eq. (9.23) is not positive definite, which
is a requirement for applying the CG algorithm. In fact, in this case also the preconditioner
is non-positive definite and preconditioned CR algorithm cannot be safely applied. However,
the results obtained using the CR algorithm are reported in Fig. 10.2 for analysis purposes.

When comparing the results presented in Fig. 10.2 and listed in Table 10.2, it is seen that
the standard response equation in the higher frequency region converges in a significantly
larger number of iterations. Solving the equation is also more problematic when calculations
are performed at a frequency in a region with a high density of excited states. This is due to
the fact that when the frequency ω is equal to an excitation energy, the standard response
equation in Eq. (7.2) becomes singular and diverges, as discussed in Chapter 4.

An improved convergence is obtained when the standard response equation is solved using
the algorithm with symmetrized trial vectors, compared to the general subspace approach
(see Figs. 10.2a and 10.2b), as discussed in the previous section. The number of iterations is
similar for the CR algorithm (Fig. 10.2c) and the subspace approach with symmetrized trial
vectors (Fig. 10.2b). One extra iteration is reported for the CR (compared to the subspace)
algorithm, however, the disk storage has been significantly truncated to only four vectors
during the whole iterative procedure. Although, good performance of the CR algorithm may
be seen in Fig. 10.2c, i.e., the residual decreases in each iteration, the CR algorithm cannot
be safely applied when a non-positive definite preconditioner is used.

10.3 The damped response equation

In this section, results obtained for solving the damped response equation in Eq. (7.3) are
reported. The general performance of various algorithms for solving damped response equa-
tions (described in Chapters 7–9) is compared. The calculations of the real and imaginary
components of the linear polarizability (associated with dispersion and absorption, respec-
tively), for different systems, are reported.
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In all calculation shown in this section, the damped response equations have been solved
to a residual norm of 10−4.

10-4

10-3

10-2

10-1

100

101

102

re
sid

ua
l n

or
m

(a) general

10-4

10-3

10-2

10-1

100

101

re
sid

ua
l n

or
m

(b) subspace

10-4

10-3

10-2

10-1

100

101

10 20 30 40 50

re
sid

ua
l n

or
m

iterations

(c) CR

Figure 10.2: Convergence of the
standard response equation for ala-
nine in resonance region (ω = 0.4
a.u.), using different approaches: (a)
the general subspace approach, (b)
the subspace algorithm with sym-
metrized trial vectors, (c) the CR al-
gorithm with symmetrized trial vec-
tors; HF/6-31G, threshold=10−4.
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Figure 10.3: The xx component of (a) the imaginary part (absorption), (b) the real part
(dispersion) of the linear polarizability for pCT−, γ = 0.005 a.u. Above points: number of
iterations needed to solve complex response equations for each frequency.

10.3.1 Deprotonated trans-thiomethyl-p-coumarate

In this section, calculations of the xx component of the linear polarizability, ᾱxx, for deproto-
nated trans-thiomethyl-p-coumarate (pCT−), displayed in Fig. 10.1c, are reported. pCT− is
a model of the protein chromophore of the photo-active yellow protein (PYP). Calculations
have been carried out at the HF/6-31G level of theory, using the experimental geometry [164].

In Figs. 10.3a and 10.3b, the imaginary and real components, respectively, of ᾱxx are
presented, for the excited-state lifetime broadening parameter γ equal to 0.005 a.u.. For the
selected frequencies, the number of iterations obtained with the subspace iterative algorithm
with symmetrized trial vectors (described in Section 9.4) is reported.

As can be seen in Fig. 10.3, the computational cost of the calculation depends on how
close the frequency of interest ω is to resonance, and on the density of excited states in this
region. If the frequency of interest is in the far-off-resonance region (in Fig. 10.3, the region
below ω = 0.3 a.u.), a rapid convergence is obtained, due to a small coupling between the real
and imaginary components of the solution vector. In the resonance region, a large coupling
between the real and the imaginary component of the solution vector occurs in particular in
a frequency region with a high density of excited states. This has a significant influence on
the convergence and increases the computational cost of the calculations. It can be seen in
Fig. 10.3 that the computational cost for the calculations in the region above ω = 0.4 a.u. is
much higher, compared to the calculations in the lower frequency region (even though, there
is a strong excitation around ω = 0.33 a.u.). This behavior is related to a high density of
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excited states in higher frequency regions.

In Table 10.3, the total number of Fock matrices constructed when solving the damped
response equation in the ᾱxx calculation for pCT− is reported for selected frequencies. Six
different approaches have been used: (i) the approach by Norman et al. [29], (ii) the one-
subspace approach, (described in Section 8.4.1), (iii)-(v) the two-level-subspace approaches
(described in Section 8.4.2), where in each macro-iteration sets of trial vectors from micro-
iterations are not stored, where they are stored, and the preconditioned two-level-subspace
approach (described in Section 8.4.3), where the trial vectors from all micro-iterations are
stored and (vi) the subspace algorithm with symmetrized trial vectors (described in Sec-
tion 9.4). The total number of Fock matrices (linear transformations E[2]b) is reported,
since this is the computationally most demanding part of an iteration in the iterative al-
gorithm, and therefore determines a cost of a calculation, as discussed in Section 7.3. The
results presented in Table 10.3 differ from the ones reported in Paper A [33]. This is due
to the fact that at the time the calculations presented of Table III in Ref. [33] had been
performed, in each iteration of the one-subspace approach and in each macro-iteration in
the two-level-subspace approach, two linear transformations (for the real and the imaginary
component of the trial vector) were carried out sequentially. However, in an improved imple-
mentation, linear transformations are carried simultaneously, and the cost is independent of
the number of trial vectors. Performance in the micro-subspace level has not changed and in
each micro-iteration in the two-level-subspace approach, one linear transformation is carried
out.

From Table 10.3 it can be seen that the computational cost of the calculations performed
using the approaches presented in Section 8.4 (third–sixth column), is less than half of what
has been obtained using the approach presented by Norman et al. [29](second column).15

Application of the one-subspace approach (third column), if it converges, decreases the cost
of calculations up to 4 times, compared to the cases where the two-level-subspace approach
without preconditioning (fourth column) or the approach of Norman et al. have been used.
This advantage is related to the fact that none of these algorithms exploits the small coupling
in the far-off-resonance region. It can be also seen in Table 10.3 that using the two-level-
subspace approach where sets of trial vectors from micro-iterations obtained in each macro-
iteration are stored and used as start guesses in the next macro-iterations (fifth column),

15However, it should be mentioned that in the algorithm by Norman et al. [29], Eq. (7.3) can be solved for
several frequencies simultaneously, which is not (yet!) available for the algorithms presented in this thesis.
Since the calculations reported in Table 10.3 have been performed for only one frequency, this advantage of
the algorithm by Norman et al. could not be exploited.
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Table 10.3: Number of Fock matrices constructed (for selected frequencies) when determining
the xx component of the linear polarizability of pCT− molecule using: (i) the approach by
Norman et al. (second column), (ii) the one-subspace approach, (third column), (iii-v)
the two-level-subspace approaches, where in each macro-iteration sets of trial vectors from
micro-iterations are not stored (fourth column), where they are stored (fifth column), the
preconditioned two-level-subspace approach, where the trial vectors from all micro-iterations
are stored (sixth column) and (vi) the subspace algorithm with symmetrized trial vectors
(seventh column); γ = 0.005 a.u., threshold=10−4.

approach One Two-level alg. with
ω [a.u.] by Norman subspace subspace approach symmetrized

et al. [29] approach no storing storing precond. trial vect.

0.000 31 4 11 11 11 4
0.100 31 7 18 18 18 6
0.200 51 7 19 19 19 6
0.225 52 7 19 19 19 6
0.250 65 7 21 21 21 6
0.275 71 8 21 21 21 6
0.300 91 8 33 33 33 7
0.325 100 10 47 41 24 8
0.330 101 - 56 42 25 8
0.335 117 - 82 49 38 9
0.340 119 - 60 45 25 9
0.345 119 14 58 41 25 8
0.350 120 9 58 40 24 8
0.375 138 9 58 46 32 10
0.400 147 - 101 55 41 17
0.425 185 - 147 70 54 21
0.430 192 16 96 64 61 18
0.435 195 - 135 74 67 19
0.440 191 - 195 80 66 18
0.445 190 - 155 72 61 18
0.450 197 19 80 60 58 21
0.475 234 - 221 88 78 21
0.500 245 - 280 118 81 24
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is computationally less expensive, compared to the approach where vectors are not stored
(fourth column) [see also Fig. 8.2]. No difference is noted in the far-off-resonance region,
due to the fact that convergence is obtained in one macro-iteration and the cost of the first
macro-iteration is identical in both approaches (see the left panel in Fig. 8.2). In the region
with a high density of excited states (above ω = 0.4 a.u.), the results using the two-level-
subspace approach without storing vectors have been obtained in twice as many iterations
as for the approach where vectors are stored. By comparing the fifth and the sixth column
in Table 10.3, it can be seen that introducing preconditioning in the macro-subspace level16

has significantly improved convergence.

It should be noted that even though the one-subspace approach yields a significantly
better convergence compared to the other approaches, it may only be applied in a far-off-
resonance frequency region. For this reason, it cannot be used in practice for large molecular
systems, which are characterized by high density of excited states in the entire frequency
range. It should also be noted that even though a significant improvement is reported for
calculations performed using the preconditioned two-level-subspace approach where all trial
vectors have been stored, this algorithm may not be applied for very large molecular systems,
due to the tremendous storage requirements of the current implementation.

Comparing the number of Fock matrices constructed during the calculations using the
preconditioned two-level-subspace approach (sixth column) and the algorithm with sym-
metrized trial vectors (seventh column), an astonishing improvement is observed. When the
algorithm with symmetrized trial vectors is used in the region of a single strong excitation
(around ω = 0.33 a.u.), only 2–3 iterations more are required to converge Eq. (7.3), compared
to the off-resonance region. In the region with a high density of excited states (above ω =
0.4 a.u.), the number of iterations increases, however not drastically, as when the precon-
ditioned two-level-subspace approach was used. It can be seen that the computational cost
of the calculations carried out using the algorithm with symmetrized trial vectors is, in the
higher frequency region, about half of what has been reported for the preconditioned two-
level-subspace approach. This is due to a very efficient way of obtaining new trial vectors in
the algorithm with the symmetrized trial vectors, using the preconditioner in Eq. (9.31) that
includes all the coupling between solution vector components. It should also be noted that
in the preconditioned two-level-subspace approach, all the trial vectors are stored on disk,
which makes it inefficient for treating large molecular systems, whereas for the approach
with symmetrized trial vectors, storage is reduced.

16In the micro-subspace level, preconditioning is introduced in all approaches.
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Figure 10.4: Comparison of the yy component of (a) absorption and (b) dispersion curves
for pCT− for different values of the excited-state lifetime broadening parameter γ.

In Figure 10.4, an investigation of absorption and dispersion spectra has been performed
for different values of the excited-state lifetime broadening parameter γ. It can be seen that
higher values of γ lead to broader peaks. For very small γ, the absorption spectra is similar to
the stick spectrum obtained from the residues of the response functions in standard response
theory.

10.3.2 Deprotonated trans-p-coumaric acid

In this section, calculations of the imaginary component of the linear polarizability for depro-
tonated trans-p-coumaric acid (pCA−), displayed in Fig. 10.1c, are reported. Calculations
have been carried out using the geometry in Ref. [165] at the CAM-B3LYP/cc-pVDZ [139]
level of theory. The reported absorption spectrum contains isotropically averaged values.

In Fig. 10.5, the absorption spectrum calculated using damped response theory (b) is
compared with the results determined using the standard response theory (a) and with
the experimental findings measured by Nielsen et al. [166] (c). The Lorentzian line-shape
function (Fig. 4.1a) has been fitted to the experimental data (dots) in Fig. 10.5c to obtain the
excited-state lifetime broadening parameter γ. Using this parameter, the calculations of the
absorption spectra have been performed using standard and damped response theory. Results
presented in Fig. 10.5a are obtained by superimposing a Lorentzian line-shape function with
γ = 0.00263 a.u. (determined from Fig. 10.5c) onto the stick spectrum, obtained from the
residues of the linear response function in standard response theory. It is, as expected,
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Figure 10.5: Absorption curves for pCA−, (a) stick spectrum with superimposed Lorentzian
line-shape function,γ = 0.00263 a.u., (b) results obtained using the approach described in
Chapter 8.4, γ = 0.00263 a.u., (c) experimental data (dots) [166] with fitted Lorentzian
line-shape function.

identical to the spectrum calculated using the damped response theory, shown in Fig. 10.5b.
The absorption peak is shifted to higher frequencies compared to the experiment, but it is
known that the excitation energies obtained using DFT methods may be shifted.

In Fig. 10.6, the convergence of the damped response equation for pCA− is reported for γ
= 0.005 a.u.. The residual norms are plotted for each iteration, determined with: (i) the CR
algorithm with general trial vectors (discussed in Sections 6.3 and 7.4), (ii) the CR algorithm
with symmetrized trial vectors (discussed in Sections 6.3 and 9.4) and (iii) the subspace
algorithm with symmetrized trial vectors (discussed in Section 9.4). It should be noted
that, in principle, the CR algorithm should not have been used, since the preconditioner
is non-positive definite, as discussed in Section 6.3.2, and results obtained using the CR
algorithms are reported only for analysis purposes. The convergence is presented in the
off-resonance region (ω = 0.08 a.u.) and close to an excitation energy ω1 = 0.1321 a.u.
(ω = 0.13 a.u.). From Fig. 10.6, it can be seen that an improvement in convergence is
obtained when the algorithms with symmetrized trial vectors (middle and bottom panels)
are used for solving the damped response equation, compared to the approach with general
trial vectors (top panel). The performance in the off-resonance region (left panel) is similar
to what is obtained for the standard response equation (see Table 10.2 and Fig. 10.2). In the
resonance region (right panel), a significant improvement is observed. The CR algorithms
cannot be applied safely and this is reflected in the rather erratic convergence displayed in the
top and middle panel, while the residual should decrease in each iteration. The monotonic
convergence would be observed if a positive definite preconditioner had been used.
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10.3.3 Convergence dependence on frequency and damping parameters

In this section, an analysis of frequency and damping parameter dependence is presented.
The damped response equations have been solved for Ala-Trp, using the subspace iterative
approach with symmetrized trial vectors, at the CAM-B3LYP/6-31G level of theory.

In Fig. 10.7, convergence of the damped response equation is reported at different fre-
quencies, ω = 0.1 a.u. and ω = 0.3 a.u., and for different values of damping parameters γ,
equal to 0.0, 0.005 and 0.01 a.u.. From Fig. 10.7, it can be concluded that the convergence is
independent of the damping parameter γ, when the algorithm with symmetrized trial vectors
is used. This is due to the fact that an efficient preconditioner in Eq. (9.31) has been used
to obtain new trial vectors. By comparing the top and the bottom panel in Fig. 10.7, it
can be seen that convergence of the damped response equation is obtained in significantly
larger number of iterations for the higher frequency. This is related to the fact that in the
higher frequency region with a high density of excited states, the contribution to the large
eigenvalues is not removed by preconditioning.
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Figure 10.7: Convergence of the response equation for Ala-Trp, CAM-B3LYP/6-31G, for
different values of γ and ω. Upper panel: ω = 0.1 a.u., Lower panel: ω = 0.3 a.u..
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Figure 10.8: The xx component of the imaginary part of the linear polarizability for a DNA
fragment consisting of one (left panel) and two (right panel) nucleotides, γ = 0.005 a.u.;
Top panel: Absorption spectra obtained using damped response theory; Middle panel:

first 50 excitation energies stick spectrum with superimposed Lorentzian line-shape function;
Bottom panel: density of the first 50 excited states.
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10.3.4 DNA fragments containing one and two nucleotides

In Fig. 10.8, calculations of the xx imaginary component of the linear polarizability for
a DNA fragment consisting of one and two nucleotides are presented (see Figs. 10.1e and
10.1f, respectively). The calculations have been carried out using a geometry obtained with
the Maestro program [162] at the HF/6-31G level of theory. The excited-state lifetime
broadening parameter γ is equal 0.005 a.u.. In the top panels in Fig. 10.8, the xx component
of the absorption spectra obtained from damped response theory are shown. In the middle
panels, the stick spectra containing the first 50 excitations are presented (obtained from
the residues of the linear response function in standard response theory) with an imposed
Lorentzian line-shape function. In the bottom panels, the density of the first 50 excited
states is reported. It can be seen that the density of the excited states increases drastically
in higher frequencies regions and with the size of the system. As can be seen from the middle
panels in Fig. 10.8, the first 50 excitation energies can give quite a good approximation
for the absorption spectrum of one nucleotide, whereas for a DNA fragment consisting of
two nucleotides, the first 50 excitations only include very low lying states and cannot be
used for obtaining the absorption spectrum in the higher frequency region. It is expected
that DNA fragments consisting of more nucleotides have even more low lying excited states
and it may be impossible to obtain the spectrum in higher density regions using standard
response theory. However, damped response theory can be successfully applied for obtaining
absorption spectra for large systems in higher frequency regions. Furthermore, since any
frequency interval of interest may be chosen, a high density of low lying states does not
cause any problems when the damped response theory is applied.
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11 Conclusion

Molecular properties are obtained by solving response equations. The response equations in
Hartree–Fock, multi-configurational self-consistent field, and Kohn–Sham density functional
theory have identical structures. Different algorithms for solving eigenvalue, standard and
damped response equations have been presented and compared. New efficient algorithms
have been introduced based on the splitting of trial vectors into symmetric and antisymmetric
components.

A phenomenological formulation of damped response theory based on the quasi-energy
formalism has been presented. Application of damped response theory, as has been shown,
leads to physically correct dispersion and absorption spectra, which may be obtained from
the real and the imaginary components of damped response functions, respectively. Damped
response theory has also been successfully applied to higher-order properties, such as mag-
netic circular dichroism and two-photon absorption. Qualitatively correct spectra have been
obtained for these properties.

In standard response theory, absorption processes are determined from residues of re-
sponse functions. Absorption spectra are constructed by imposing a line-shape function
onto a stick spectrum. However, for large molecular systems it may be impossible to ob-
tain a stick spectrum for higher frequencies, when a vast amount of low lying excitations is
present. In contrast, damped response theory may be applied for any frequency of interest
and therefore spectra may be compassed in the entire frequency range.

Several algorithms for solving damped response equations have been introduced. They
have been implemented as an extension to the linear-scaling response equation solver pre-
sented by Coriani et al. in Ref. [23]. Introducing symmetrized trial vectors in the response
equations, effects in transformation to a form in which they may be solved conveniently due
to the fact that very efficient preconditioners may be used. An attempt has been made to
apply the conjugate gradient and conjugate residual algorithms to response equations.

It can be concluded that the most efficient algorithm for solving the standard and damped
response equation is the iterative subspace algorithm with symmetrized trial vectors. For
the standard response equation at low frequencies ω, the preconditioned CG/CR algorithms
may be used, thereby avoiding the storing and handling of a large set of trial vectors to
set up the reduced space equations. However, these algorithms may only be applied for
the angular frequency lower than the first excitation energy (only then the matrix in the
standard response equation is positive definite), and therefore, in practice, they cannot be
used for large molecular systems, characterized by a high density of low lying excited states.
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For solving the response eigenvalue equations, it is equally efficient to use algorithms with
paired as with symmetrized trial vectors and no improvement is obtained by using the Olsen
algorithm.

In conclusion, damped response theory together with a linear-scaling framework is an
excellent tool for a qualitatively correct description of absorption processes and may be used
for determining spectra for large molecular systems.



A. THE CONJUGATE GRADIENT ALGORITHM WITH PAIRING 127

A The Conjugate gradient algorithm with pairing

The paired trial vectors will now be introduced in the CG algorithm presented in Section 6.2.

When Eq. (6.1) is solved using the CG algorithm with paired trial vectors after n itera-
tions, 2n solution vectors x2n, 2n residuals rn and 2n− 2 directions p2n−2 given as

x2n = {x1,x
P
1 ,x2,x

P
2 , ...,xn,x

P
n } , (A.1)

r2n = {r1, r
P
1 , r2, r

P
2 , ..., rn, r

P
n } , (A.2)

p2n−2 = {p1,p
P
1 ,p2,p

P
2 ...,pn−1,p

P
n−1} , (A.3)

respectively, are known. The paired vectors are defined as in Eqs. (8.2) and (8.3). It may
be shown that the previous direction and residuals fulfill the relations

rTi pj = 0, rP,Ti pj = 0, i, j = 1, 2, . . . , n, i > j, (A.4a)

rTi rj = 0, rP,Ti rj = 0, i, j = 1, 2 . . . , n, i > j, (A.4b)

rTi Apj = 0, i, j = 1, 2, . . . , n, i > j + 1, (A.4c)

pTi Apj = pTi Apjδij, i, j = 1, 2, . . . , n− 1, (A.4d)

pP,Ti Apj = pP,Ti Apjδij, i, j = 1, 2, . . . , n− 1, (A.4e)

pTi ArPj = pTi ArPj δij, i, j = 1, 2, . . . , n− 1 . (A.4f)

The new trial vector can be written as a general vector in the space spanned by the previous
search directions pn and their paired counterparts pn,P , the current residual rn and its paired
vector rPn

xn+1 = xn +
n−1∑
i=1

(α
(n)
i pi + α

(n),P
i pPi ) + α(n)

n rn + α(n),P
n rPn . (A.5)

Minimizing g(xn+1) with respect to 2n free parameters leads to the subspace equation


pT
1 Ap1 pT

1 ApP
1 . . . pT

1 Apn−1 pT
1 ApP

n−1 pT
1 Arn pT

1 ArPn
p
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1 Ap1 p

P,T
1 ApP

1 . . . p
P,T
1 Apn−1 p

P,T
1 ApP

n−1 p
P,T
1 Arn p

P,T
1 ArPn

. . . . . . . . . . . . . . . . . . . . .

pT
n−1Ap1 pT

n−1ApP
1 . . . pT

n−1Apn−1 pT
n−1ApP

n−1 pT
n−1Arn pT

n−1ArPn
p
P,T
n−1Ap1 p

P,T
n−1ApP

1 . . . p
P,T
n−1Apn−1 p

P,T
n−1ApP

n−1 p
P,T
n−1Arn p

P,T
n−1ArPn

rTnAp1 rTnApP
1 . . . rTnApn−1 rTnApP

n−1 rTnArn rTnArPn
rP,T
n Ap1 rP,T

n ApP
1 . . . rP,T

n Apn−1 rP,T
n ApP

n−1 rP,T
n Arn rP,T

n ArPn




α
(n)
1

α
(n),P
1

.

.

.

α
(n)
n−1
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(n),P
n−1

α
(n)
n

α
(n),P
n

 =


pT
1 rn

p
P,T
1 rn

.

.

.
pT
n−1rn

p
P,T
n−1rn

rTn rn

rP,T
n rn

 ,

(A.6)
that is equivalent to

Aredαred = bred (A.7)
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where

Ared =


pT
1 Ap1 pT

1 ApP
1 0 pT

1 ApP
2 . . . 0 pT
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1 Arn p
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p
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P,T
2 ApP

1 p
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2 Ap2 p

P,T
2 ApP
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P,T
2 Arn p

P,T
2 ArPn

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . pT
n−1Apn−1 pT
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n−1 pT
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n−1ArPn
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P,T
n−1ApP

1 p
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n−1Ap2 p

P,T
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2 . . . p
P,T
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P,T
n−1ApP

n−1 p
P,T
n−1Arn p

P,T
n−1ArPn

0 rTnApP
1 0 rTnApP

2 . . . rTnApn−1 rTnApP
n−1 rTnArn rTnArPn

0 rP,T
n ApP

1 0 rP,T
n ApP
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n Apn−1 rP,T

n ApP
n−1 rP,T

n Arn rP,T
n ArPn

 ,

(A.8)
and αred and bred are given as

αred =



α
(n)
1

α
(n),P
1

α
(n)
2

α
(n),P
2

.

.

.

α
(n)
n−1

α
(n),P
n−1

α
(n)
n

α
(n),P
n


, bred =



0

0

0

0

.

.

.
0

0

rTn rn

rP,T
n rn

 . (A.9)

It can be seen from Eq. (A.8) that not only the last three, but all trial vectors in the
reduced space are necessary to obtain the optimal solution vector in iteration n+ 1 and the
subspace equation in Eq. (A.7) needs to be solved. The CG algorithm does not benefit from
using pairing property due to the fact that not all relations similar to Eqs. (6.12a)–(6.12c)
can be obtained for the elements containing the paired counterparts. It is due to the fact
that the linear transformation AxP is not equal to (Ax)P , therefore only some elements in
the matrix in Eq. (A.8) are equal to zero. In consequence, when trial vectors are added in
pairs to the reduced subspace in the CG iterative algorithm, all the vectors need to be stored
on disk.

Solving the standard response equations using the CR algorithm also does not benefit
from using pairing property. It is due to the same reasons, as shown above for the CG
algorithm.
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B Solving response equations using the Casida approach

A different approach for solving the standard response equations has been presented by
Casida [86]. In this approach the standard response equation in the two component form[(

A B

B A

)
− ω

(
Σ 0

0 −Σ

)](
X

Y

)
=

(
G1

G2

)
, (B.1)

using the unitary transformation U in Eq. (3.60), is expressed as[(
A+B 0

0 A−B

)
− ω

(
0 −Σ

−Σ 0

)](
X ′

−Y ′

)
=

(
G′1

−G′2

)
, (B.2)

where
X ′ = X + Y ; Y ′ = X − Y ; G′1 = G1 +G2; G′2 = G1 −G2 . (B.3)

(for details, see Ref. [86]). From Eq. (B.2) two separate equations are obtained

[(A+B)− ω2Σ(A−B)−1Σ]X ′ = G′1 + ωΣ(A−B)−1G′2 , (B.4)

and
[(A−B)− ω2Σ(A+B)−1Σ]Y ′ = G′2 − ωΣ(A+B)−1G′1 . (B.5)

The solution to the standard response equation is thus in this approach replaced by solving
two sets of linear equations of half the dimension of E[2]. When solving Eqs. (B.4) and (B.5)
the inverse matrices (A−B)−1 and (A+B)−1 are required. When the matrices (A−B) and
(A+B) are constructed explicitly these inverse matrices may be obtained straightforwardly.
When the dimension of (A−B) and (A+B) is large and the iterative subspace algorithms
need to be used the separation of Eq. (B.2) into a two component form in Eqs. (B.4) and
(B.5) becomes inefficient as it require the determination of (A−B)−1. Eq. (B.2) is identical
to Eq. (9.23) and should be used directly.

If we assume an orthonormal MO representation Σ is the unit matrix. To avoid inverting
the matrices A+B and A−B Eqs. (B.4) and (B.5) may be expressed as

[(A−B)(A+B)− ω2]X ′ = (A−B)G′1 + ωG′2 , (B.6)

and
[(A+B)(A−B)− ω2]Y ′ = (A+B)G′2 − ωG′1 , (B.7)

that is analogous to what was presented in Ref. [85]. The condition number for the set sets
of linear equations in Eqs. (B.6) and (B.7) is the condition number of (A−B)(A+B) and
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(A +B)(A −B), respectively. Since the matrix B is small compared to A the condition
number of Eqs. (B.6) and (B.7) is determined by the matrix A2. This means that both
Eqs. (B.6) and (B.7) have a condition number that is the square of the condition number of
the standard response equation in Eq. (B.1) (see Section 7.3).
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